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Medicine is an ever-changing science. As new research and clinical experience broaden
our knowledge, changes in treatment and drug therapy are required. The author and
the publisher of this work have checked with sources believed to be reliable in their
efforts to provide information that is complete and generally in accord with the
standards accepted at the time of publication. However, in view of the possibility of
human error or changes in medical sciences, neither the author nor the publisher
nor any other party who has been involved in the preparation or publication of this
work warrants that the information contained herein is in every respect accurate
or complete, and they disclaim all responsibility for any errors or omissions or for
the results obtained from use of the information contained in this work. Readers
are encouraged to confirm the information contained herein with other sources. For
example, and in particular, readers are advised to check the product information
sheet included in the package of each drug they plan to administer to be certain that
the information contained in this work is accurate and that changes have not been
made in the recommended dose or in the contraindications for administration. This
recommendation is of particular importance in connection with new or infrequently
used drugs.
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What I've proposed is that we have a panel of medical experts that are making determina-
tions about what protocols are appropriate for what diseases. There’s going to be some
disagreement, but if there’s broad agreement that, in this situation the blue pill works better
than the red pill, and it turns out the blue pills are half as expensive as the red pill, then we
want to make sure that doctors and patients have that information available to them.

President Barack Obama, 2009*

*Interview with ABC News’ Dr. Timothy Johnson, July 15, 2009.
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Preface

I have always thought of myself as something of an out-
sider and troublemaker, so it is with some humility that I
prepare the seventh edition of this book, 30 years after the
first edition appeared. Then, as now, the book had an
unusual perspective: that many papers in the medical lit-
erature contained avoidable errors. At the time, the pub-
lisher, McGraw-Hill, expressed concern that this
“confrontational approach” would put off readers and
hurt sales. They also worried that the book was not orga-
nized like a traditional statistics text.

Time has shown that the biomedical community was
ready for such an approach and the book has achieved
remarkable success.

The nature of the problems with the medical literature,
however, has evolved over time and this new edition
reflects that evolution. Many journals now have formal
statistical reviewers so the kinds of simple errors that used
to dominate have been replaced with more subtle prob-
lems of biased samples and underpowered studies
(although there are still more than enough inappropriate
t tests to go around). Over time, this book has evolved to
include more topics, such as power and sample size, more
on multiple comparison procedures, relative risks and
odds ratios, and survival analysis.

In this edition I actually pruned back the discussion of
multiple comparison testing to focus on Bonferonni,
Holm, and Holm-Sidak corrected tests for both paramet-
ric and nonparametric methods.

At the same time, this is the most extensive revision
done for a new edition since the book was first published.
The book is now published in a larger, more open text
format with more worked out examples. There are new
brief introductions to higher order analysis of variance,
multiple regression and logistic regression,* as well as
expanded discussions of problems with study designs and
more information on how to combine information from
many different studies. The examples and problems have

been extensively reworked, with almost all coming from
studies published in the twenty-first century.

This book has its origins in 1973, when I was a post-
doctoral fellow. Many friends and colleagues came to me
for advice and explanations about biostatistics. Since most
of them had even less knowledge of statistics than I did, I
tried to learn what I needed to help them. The need to
develop quick and intuitive, yet correct, explanations of
the various tests and procedures slowly evolved into a set
of stock explanations and a two-hour slide show on com-
mon statistical errors in the biomedical literature and how
to cope with them. The success of this slide show led many
people to suggest that I expand it into an introductory
book on biostatistics, which led to the first edition of
Primer of Biostatistics in 1981.

As a result, this book is oriented as much to the indi-
vidual reader —whether he or she is a student, postdoc-
toral research fellow, professor, or practitioner—as to the
student attending formal lectures.

This book can be used as a text at many levels. It has
been the required text for the biostatistics portion of the
epidemiology and biostatistics course required of medical
students, covering the material in the first eight chapters
in eight one-hour lectures. The book has also been used
for a more abbreviated set of lectures on biostatistics (cov-
ering the first three chapters) given to our dental students.
In addition, it has served me (and others) well in a one-
quarter four-unit course in which we cover the entire
book in depth. This course meets for four lecture hours
and has a one-hour problem session. It is attended by a
wide variety of students, from undergraduates through

*These issues are treated in detail in a second book on the subject of
multiple regression and analysis of variance, written with the same ap-
proach in Primer of Biostatistics. It is Glantz SA, Slinker BK. Primer of
Applied Regression and Analysis of Variance, 2nd ed. New York: McGraw-
Hill; 2001.
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xiv Preface

graduate students and postdoctoral fellows, as well as fac-
ulty members.

Because this book includes the technical material cov-
ered in any introductory statistics course, it is suitable as
either the primary or the supplementary text for a general
undergraduate introductory statistics course (which is
essentially the level at which this material is taught in
medical schools), especially for a teacher seeking a way to
make statistics relevant to students majoring in the life
sciences.

This book differs from other introductory texts on bio-
statistics in several ways, and it is these differences which
seem to account for the book’s enduring popularity.

First, because inappropriate use of the ¢ test to analyze
multigroup studies continues to be a common error, prob-
ably because the t test is usually the first procedure pre-
sented in a statistics book that will yield the highly prized
Pvalue. Analysis of variance, if presented at all, is deferred
to the end of the book to be ignored or rushed through at
the end of the term. Since so much is published that prob-
ably should be analyzed with analysis of variance, and
since analysis of variance is really the paradigm of all
parametric statistical tests, I present it first, then discuss
the t test as a special case.

Second, in keeping with the problems that I see in the
literature, there is a discussion of multiple comparison
testing.

Third, the book is organized around hypothesis test-
ing and estimation of the size of treatment effects, as
opposed to the more traditional (and logical from a the-
ory of statistics perspective) organization that goes from
one-sample to two-sample to general k-sample estima-
tion and hypotheses testing procedures. This approach
goes directly to the kinds of problems one most com-
monly encounters when reading about or doing biomed-
ical research.

The examples are based mostly on interesting studies
from the literature and are reasonably true to the original
data. I have, however, taken some liberty in recreating the

raw data to simplify the statistical problems (for example,
making the sample sizes equal) so that I could focus on
the important intuitive ideas behind the statistical proce-
dures rather than getting involved in the algebra and
arithmetic. There are still some topics common in intro-
ductory texts that I leave out or treat implicitly. There is
not an explicit discussion of probability calculus and
expected values and I still blur the distinction between P
and o

As with any book, there are many people who deserve
thanks. Julien Hoffman gave me the first really clear and
practically oriented course in biostatistics, which allowed
me to stay one step ahead of the people who came to me
for expert help. Over the years, Virgina Ernster, Susan
Sacks, Philip Wilkinson, Marion Nestle, Mary Giammona,
Bryan Slinker, Jim Lightwood, Kristina Thayer, Joaquin
Barnoya, Jennifer Ibrahim, and Sara Shain helped me find
good examples to use in the text and as problems. Bart
Harvey and Evelyn Schlenker were particularly gracious in
offering suggestions and detailed feedback on the new
material in this edition. I thank them all. Finally, I thank
the many others who have used the book, both as students
and as teachers of biostatistics, who took the time to write
me questions, comments, and suggestions on how to
improve it. I have done my best to heed their advice in
preparing this seventh edition.

Many of the pictures in this book are direct descen-
dants of my original slides. In fact, as you read this book,
you would do best to think of it as a slide show that has
been set to print. Most people who attend my slide show
leave more critical of what they read in the biomedical
literature and people who have read earlier editions said
that the book had a similar effect on them. Nothing could
be more flattering or satisfying to me. I hope that this
book will continue to make more people more critical and
help improve the quality of the biomedical literature and,
ultimately, the care of people.

Stanton A. Glantz



Biostatistics and
Clinical Practice

Until the second quarter of the 20th century, medical
treatment had little positive effect on when, or even
whether, sick people recovered. With the discovery of ways
to reverse the biochemical deficiencies that caused some
diseases and the development of antibacterial drugs, it
became possible to cure sick people. These early successes
and the therapeutic optimism they engendered stimulated
the biomedical research community to develop a host of
more powerful agents to treat heart disease, cancer, neu-
rological disorders, and other ailments. These increasing
opportunities for productive intervention as well as a fun-
damental restructuring of the market away from non-
profit health care providers to for-profit entities and the
expansion of the pharmaceutical, medical device, and
insurance industries that saw opportunities to make
money providing medical services, together with increas-
ing expectations by the public, have led to spending an
accelerating amount of money on medical services, reach-
ing $2.6 trillion and nearly one-fifth of the United States’
entire gross domestic product in 2011 (Fig. 1-1).

This situation has led to continuous calls for reform
from a wide spectrum of stakeholders, from business lead-
ers who saw their costs skyrocketing, to labor leaders who
saw health insurance costs putting downward pressure on
wages, to advocates for the growing number of uninsured
people who were simply priced out of the system, to polit-
ical decision makers who saw out-of-control costs of pro-
viding medical care through government programs such
as Medicare and Medicaid, jeopardizing other important
government services.

CHAPTER

Because of the fact that medical care touches every-
one’s life in one way or another and because of the high
stakes — financial and otherwise—for the individuals
and organizations that provide these services, reforming
the health care system has been a controversial and politi-
cally charged issue.

After over a year of increasingly partisan debate, in
March 2010 the Democrats in Congress passed the Patient
Protection and Affordable Care Act without a single
Republican vote. On March 23, 2010, President Barack
Obama signed the bill into law.

While this law has many provisions, including requir-
ing people to have or purchase health insurance and
imposing many regulations on the health insurance
industry, it also recognizes that the current medical sys-
tem is unsustainable financially and includes several pro-
visions designed to get the costs of the medical system
under control. (Indeed, one of the main facts driving the
debate was the observation, from an ongoing research
project at Dartmouth University, the Dartmouth Atlas of
Health Care,* that 30% of the nation’s medical spending
would be unnecessary if all regions of the United States
the provided services at the level observed in low-spending
regions that achieved that same equal quality.) The law

*The research behind this statement, together with many other findings
about geographical variations in medical services and health outcomes is
available at www.dartmouthatlas.org.
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FIGURE 1-1. (A) Total annual expenditures for medical services in the United States between
1960 and 2010. (B) Expenditures for medical services as a percentage of the gross domestic
product. (Source: Statistical Abstract of the United States, 2011. Washington, DC: US

Department of Commerce, pp. 99.)

established a Patient-Centered Outcomes Research Insti-
tute to conduct comparative effectiveness research on the
“relative health outcomes, clinical effectiveness, and
appropriateness” of different medical treatments. The law
also created task forces on Preventive Services and Com-
munity Preventive Services to develop, update, and dis-
seminate evidenced-based recommendations on the use
of clinical and community prevention services.

These issues are, at their heart, statistical issues.
Because of factors such as natural biological variability
between individual patients and the placebo effect,* one
usually cannot conclude that some therapy was beneficial
on the basis of simple experience. Biostatistics provides
the tools for turning clinical and laboratory experience

*The placebo effect is a positive response to therapy per se as opposed to
the therapy’s specific effects. For example, about one-third of people
given placebos in place of painkillers report experiencing relief. We will
discuss the placebo effect in detail later in this book.

into quantitative statements about whether and by how
much a treatment or procedure affects a group of
patients.

Hence, evidence collected and analyzed using biostatis-
tical methods can potentially affect not only how clini-
cians choose to practice their profession but what choices
are open to them. Intelligent participation in these deci-
sions requires an understanding of biostatistical methods
and models that will permit one to assess the quality of the
evidence and the analysis of that evidence used to support
one position or another.

Clinicians have not, by and large, participated in
debates on these quantitative questions, probably because
the issues appear too technical and seem to have little
impact on their day-to-day activities. Clinicians need to
be able to make more informed judgments about claims
of medical efficacy so that they can participate more intel-
ligently in the debate on how to allocate health care
resources. These judgments will be based, in large part, on
statistical reasoning.
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B WHAT DO STATISTICAL PROCEDURES
TELL YOU?

Suppose researchers believe that administering some
drug increases urine production in proportion to the
dose and to study it they give different doses of the drug
to five different people, plotting their urine production
against the dose of drug. The resulting data, shown in
Figure 1-2A, reveal a strong relationship between the
drug dose and daily urine production in the five people
who were studied. This result would probably lead the
investigators to publish a paper stating that the drug was
an effective diuretic.

The only statement that can be made with absolute
certainty is that as the drug dose increased, so did urine
production in the five people in the study. The real question
of interest, however, is: How is the drug likely to affect all
people who receive it? The assertion that the drug is effec-
tive requires a leap of faith from the limited experience,
shown in Figure 1-2A, to all people.

Now, pretend that we knew how every person who
would ever receive the drug would respond. Figure 1-2B
shows this information. There is no systematic relation-
ship between the drug dose and urine production! The
drug is not an effective diuretic.

How could we have been led so far astray? The dark
points in Figure 1-2B represent the specific individuals
who happened to be studied to obtain the results shown
in Figure 1-2A. While they are all members of the popu-
lation of people we are interested in studying, the five
specific individuals we happened to study, taken as a
group, were not really representative of how the entire
population of people responds to the drug.

Looking at Figure 1-2B should convince you that obtain-
ing such an unrepresentative sample of people, though
possible, is not very probable. One set of statistical proce-
dures, called tests of hypotheses, permit you to estimate
the likelihood of concluding that two things are related as
Figure 1-2A suggests when the relationship is really due to
bad luck in selecting people for study, and not a true effect
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FIGURE 1-2. (A) Results of an experiment in which researchers administered five different
doses of a drug to five different people and measured their daily urine production. Output
increased as the dose of drug increased in these five people, suggesting that the drug is an
effective diuretic in all people similar to those tested. (B) If the researchers had been able
to administer the drug to all people and measure their daily urine output, it would have been
clear that there is no relationship between the dose of drug and urine output. The five
specific individuals who happened to be selected for the study in panel A are shown as
shaded points. It is possible, but not likely, to obtain such an unrepresentative sample that
leads one to believe that there is a relationship between the two variables when there is
none. A set of statistical procedures called tests of hypotheses permits one to estimate
the chance of getting such an unrepresentative sample.
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of the drug. In this example, one can estimate that such a
sample of people will turn up in a study of the drug only
about 5 times in 1000 when the drug actually has no effect.

Of course it is important to realize that although
statistics is a branch of mathematics, there can be honest
differences of opinion about the best way to analyze a
problem. This fact arises because all statistical methods are
based on relatively simple mathematical models of reality,
so the results of the statistical tests are accurate only to the
extent that the reality and the mathematical model under-
lying the statistical test are in reasonable agreement.

B WHY NOT JUST DEPEND ON
THE JOURNALS?

Aside from direct personal experience, most health care
professionals rely on medical journals to keep them
informed about the current concepts on how to diagnose
and treat their patients. Since few members of the clinical
or biomedical research community are conversant in the
use and interpretation of biostatistics, most readers
assume that when an article appears in a journal, the
reviewers and editors have scrutinized every aspect of the
manuscript, including the use of statistics. Unfortunately,
this is often not so.

Beginning in the 1950s, several critical reviews* of the
use of statistics in the general medical literature consis-
tently found that about half the articles used incorrect
statistical methods. This situation led many of the larger
journals to incorporate formal statistical reviews (by a
statistician) into the peer review process. Reviews of the
efficacy of providing secondary statistical reviews of ten-
tatively accepted papers have revealed that about half (or
more) of the papers, tentatively accepted for publication,
have statistical problems.’ For the most part, these errors
are resolved before publication, together with substantive
issues raised by the other (content) reviewers, and the rate

*Ross OB Jr. Use of controls in medical research. JAMA. 1951;145:72-75;
Badgley RE. An assessment of research methods reported in 103 scientific
articles from two Canadian medical journals. Can MA]J. 1961;85:256—
260; Schor S, Karten I. Statistical evaluation of medical journal manu-
scripts. JAMA. 1966;195:1123—1128; Gore S, Jones IG, Rytter EC. Misuses
of statistical methods: critical assessment of articles in B.M.]J. from Janu-
ary to March, 1976. Br Med ]. 1977;1(6053):85-87.

For a discussion of the experiences of two journals, see Gardner MJ,
Bond J. An exploratory study of statistical assessment of papers published
in the British Medical Journal. JAMA. 1990;263:1355-1357; Glantz SA. It
is all in the numbers. J Am Coll Cardiol. 1993;21:835-837.

of statistical problems in the final published papers is
much lower.

By 1995, most (82%) of the large-circulation general
medical journals had incorporated a formal statistical
review into the peer review process. There was a 52%
chance that a paper published in one of these journals
would receive a statistical review before it was published.*
This situation was not nearly as common among the
smaller specialty and subspecialty journals. Only 31% of
these journals had a statistical reviewer available and only
27% of published papers had been reviewed by a statisti-
cian.

As the demands for evidence of efficacy have increased,
so has the appreciation of the problem of biased studies in
which the outcome is influenced by the selection of people
included in the study or the precise therapies that are
being compared. Sponsorship of the research by compa-
nies with a financial interest in the outcome of the study
can influence the conclusions of the resulting papers.
These problems are more subtle than just applying the
wrong statistical test. Indeed, reviews of specialty journals
continue to show a high frequency of statistical problems
in published papers.®

*Goodman SN, Altman DG, George SL. Statistical reviewing policies of
medical journals: caveat lector? ] Gen Intern Med. 1998;13:753-756.
SMore recent reviews, while dealing with a more limited selection of
journals, have shown that this problem still persists. See Rushton L.
Reporting of occupational and environmental research: use and mis-
use of statistical and epidemiological methods. Occup Environ Med.
2000;57:1-9; Dimick JB, Diener-West M, Lipsett PA. Negative results
of randomized clinical trials published in the surgical literature. Arch
Surg. 2001;136:796-800; Dijkers M, Kropp GC, Esper RM, Yavuzer G,
Cullen N, Bakdalieh Y. Quality of intervention research reporting in
medical rehabilitation journals. Am J Phys Med Rehab. 2002;81:21-33;
Welch GE 1I, Gabbe SG. Statistics usage in the American Journal of
Obstetrics and Gynecology: has anything changed? Am J Obstet Gynecol.
2002;186:584-586; Maggard MA, O’Connell JB, Liu JH, Etzioni DA, Ko
CY. Sample size calculations in surgery: are they done correctly. Sur-
gery. 2003;134:275-279; Bedard PL, Kryzzanowska MK, Pintille M,
Tannock IF. Statistical power of negative randomized controlled trials
presented at American Society for Clinical Oncology annual meetings.
J Clin Oncol. 2007;25:3482-3487; Tsang R, Colley L, Lynd LD. Inade-
quate statistical power to detect clinically significant differences in
adverse event rates in randomized controlled trials. J Clin Epidemiol.
2009;62:609-616; Boutron I, Dutton S, Ravaud P, Altman DG. Report-
ing and interpretation of randomized controlled trials with statisti-
cally nonsignificant results for primary outcomes. JAMA. 2010;303:
2058-2064.
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When confronted with this observation— or the con-
fusion that arises when two seemingly comparable articles
arrive at different conclusions— people often conclude
that statistical analyses are maneuverable to one’s needs,
or are meaningless, or are too difficult to understand.

Unfortunately, except when a statistical procedure
merely confirms an obvious effect (or the paper includes
the raw data), a reader cannot tell whether the data, in
fact, support the author’s conclusions or not. Ironically,
the errors rarely involve sophisticated issues that provoke
debate among professional statisticians but are simple
mistakes, such as neglecting to include a control group,
not allocating treatments to subjects at random, or misus-
ing elementary tests of hypotheses. These errors generally
bias the study on behalf of the treatments.

The existence of errors in experimental design or
biased samples in observational studies and misuse of
elementary statistical techniques in a substantial fraction
of published papers is especially important in clinical
studies. These errors may lead investigators to report a
treatment or diagnostic test to be of statistically demon-
strated value when, in fact, the available data fail to sup-
port this conclusion. Health care professionals who believe
that a treatment has been proved effective on the basis of
publication in a reputable journal may use it for their
patients. Because all medical procedures involve some
risk, discomfort, or cost, people treated on the basis of
erroneous research reports gain no benefit and may be
harmed. On the other hand, errors could produce unnec-
essary delay in the use of helpful treatments. Scientific
studies which document the effectiveness of medical
procedures will become even more important as efforts
grow to control medical costs without sacrificing quality.
Such studies must be designed and interpreted correctly.

In addition to indirect costs, there are significant direct
costs associated with these errors: money is spent, animals
may be sacrificed, and human study participants are
inconvenienced and may even be put at risk to collect data
that are not interpreted correctly.

B WHY HAS THE PROBLEM PERSISTED?

Because so many people are making these errors, there is little
peer pressure on academic investigators to use statistical
techniques carefully. In fact, one rarely hears a word of criti-
cism. Quite the contrary, some investigators fear that their
colleagues—and, especially, reviewers—will view a correct
analysis as unnecessarily theoretical and complicated.

Most editors still assume that the reviewers will exam-
ine the statistical methodology in a paper with the same
level of care that they examine the clinical protocol or
experimental preparation. If this assumption were correct,
one would expect all papers to describe, in detail as explicit
as the description of the protocol or preparation, how the
authors have analyzed their data. Yet, often the statistical
procedures used to test hypotheses in medical journals are
not even identified. It is hard to believe that the reviewers
examined the methods of data analysis with the same
diligence with which they evaluated the experiment used
to collect the data.

To read the medical literature intelligently, you will have
to be able to understand and evaluate the use of the statis-
tical methods used to analyze the experimental results as
well as the laboratory methods used to collect the data.
Fortunately, the basic ideas needed to be an intelligent
reader—and, indeed, to be an intelligent investiga-
tor—are quite simple. The next chapter begins our discus-
sion of these ideas and methods.
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How to Summarize

Data

An investigator collecting data generally has two goals:
to obtain descriptive information about the population
from which the sample was drawn and to test hypothe-
ses about that population. We focus here on the first
goal: to summarize data collected on a single variable
in a way that best describes the larger, unobserved
population.

When the value of the variable associated with any
given individual is more likely to fall near the mean
(average) value for all individuals in the population
under study than far from it and equally likely to be
above the mean and below it, the mean and standard
deviation for the sample observations describe the loca-
tion and amount of variability among members of the
population. When the value of the variable is more likely
than not to fall below (or above) the mean, one should
report the median and values of at least two other
percentiles.

To understand these rules, assume that we observe all
members of the population, not only a limited (ideally
representative) sample as in an experiment.

For example, suppose we wish to study the height of
Martians and, to avoid any guesswork, we visit Mars and
measure the entire population—all 200 of them. Figure
2-1 shows the resulting data with each Martian’s height
rounded to the nearest centimeter and represented by a
circle. There is a distribution of heights of the Martian
population. Most Martians are between about 35 and 45
cm tall, and only a few (10 out of 200) are 30 cm or
shorter, or 50 cm or taller.

CHAPTER

Having successfully completed this project and dem-
onstrated the methodology, we submit a proposal to mea-
sure the height of Venusians. Our record of good work
assures funding, and we proceed to make the measure-
ments. Following the same conservative approach, we mea-
sure the heights of all 150 Venusians. Figure 2-2 shows
the measured heights for the entire population of Venus,
using the same presentation as Figure 2-1. As on Mars, there
is a distribution of heights among members of the popu-
lation, and all Venusians are around 15 c¢m tall, almost all
of them being taller than 10 cm and shorter than 20 cm.

Comparing Figures 2-1 and 2-2 demonstrates that
Venusians are shorter than Martians and that the variabil-
ity of heights within the Venusian population is smaller.
Whereas almost all (194 of 200) the Martians’ heights fall
in a range 20 cm wide (30 to 50 cm), the analogous range
for Venusians (144 of 150) is only 10 cm (10 to 20 cm).
Despite these differences, there are important similarities
between these two populations. In both, any given mem-
ber is more likely to be near the middle of the population
than far from it and equally likely to be shorter or taller
than average. In fact, despite the differences in population
size, average height, and variability, the shapes of the dis-
tributions of heights of the inhabitants of both the planets
are almost identical. A most striking result!

B THREE KINDS OF DATA

The heights of Martians and Venusians are known as
interval data because heights are measured on a scale
with constant intervals, in this case, centimeters. For

7
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FIGURE 2-1. Distribution of heights of 200 Martians, with each Martian’s height represented by a
single point. Notice that any individual Martian is more likely to have a height near the mean height
of the population (40 cm) than far from it and is equally likely to be shorter or taller than average.

interval data, the absolute difference between two values
can always be determined by subtraction.* The differ-
ence in heights of Martians who are 35 and 36 cm tall is
the same as the difference in height of Martians who are
48 and 49 cm tall. Other variables measured on interval
scales include temperature (because a 1°C difference
always means the same thing), blood pressure (because a
1 mmHg difference in pressure always means the same
thing), height, or weight.

There are other data, such as gender, state of birth, or
whether or not a person has a certain disease, that are not
measured on an interval scale. These variables are exam-
ples of nominal or categorical data, in which individuals
are classified into two or more mutually exclusive and
exhaustive categories. For example, people could be cate-
gorized as male or female, dead or alive, or as being born
in one of the 50 states, District of Columbia, or outside
the United States. In every case, it is possible to categorize
each individual into one and only one category. In

*Relative differences can only be computed when there is a true zero
point. For example, height has a true zero point, so a Martian that is 45
cm tall is 1.5 times as tall as a Martian that is 30 cm tall. In contrast,
temperature measured in degrees Celsius or Fahrenheit does not have a
true zero point, so it would be inaccurate to say that 100°C is twice as hot
as 50°C. However, the Kelvin temperature scale does have a true zero
point. Interval data that has a true zero point is called ratio data. The
methods we will be developing only require interval data.

addition, there is no arithmetic relationship or even
ordering between the categories.”

Ordinal data fall between interval and nominal data.
Like nominal data, ordinal data fall into categories, but
there is an inherent ordering (or ranking) of the catego-
ries. Level of health (excellent, very good, good, fair, or
poor) is a common example of a variable measured on an
ordinal scale. The different values have a natural order, but
the differences or “distances” between adjoining values on
an ordinal scale are not necessarily the same and may not
even be comparable. For example, excellent health is bet-
ter than very good health, but this difference is not neces-
sarily the same as the difference between fair and poor
health. Indeed, these differences may not even be strictly
comparable.

For the remainder of this chapter, we will concentrate on
how to describe interval data, particularly how to describe
the location and shape of the distributions.* Because of the
similar shapes of the distributions of heights of Martians
and Venusians, we will reduce all the information in
Figures 2-1 and 2-2 to a few numbers, called parameters, of

Variables measured on a nominal scale in which there are only two cat-
egories are also known as dichotomous variables.

*We will present the corresponding approaches for nominal (in Chapters
5and 11) and ordinal data (in Chapter 10). The basic principles are the
same for all three kinds of data.
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FIGURE 2-2. Distribution of heights of 150 Venusians.

Notice that although the average height and dispersion

of heights about the mean differ from those of Martians
(Fig. 2-1), they both have a similar bell-shaped appearance.

the distributions. Indeed, since the shapes of the two distri-
butions are so similar, we only need to describe how they
differ; we do this by computing the mean height and the
variability of heights about the mean.

B THE MEAN

To indicate the location along the height scale, define the
population mean to be the average height of all members
of the population. Population means are often denoted by
U, the Greek letter mu. When the population is made up
of discrete members,

Sum of values, e.g., heights, for
each member of population

Population mean = -
Number of population members

The equivalent mathematical statement is

_XX
N

in which X, Greek capital letter sigma, indicates the sum of
the values of the variable X for all N members of the popu-
lation. Applying this definition to the data in Figures 2-1
and 2-2 yields the result that the mean height of Martians

is 40 cm and the mean height of Venusians is 15 cm. These
numbers summarize the qualitative conclusion that the
distribution of heights of Martians is higher than the dis-
tribution of heights of Venusians.

B MEASURES OF VARIABILITY

Next, we need a measure of dispersion about the mean. A
value an equal distance above or below the mean should
contribute the same amount to our index of variability,
even though in one case the deviation from the mean is
positive and in the other it is negative. Squaring a number
makes it positive, so let us describe the variability of a
population about the mean by computing the average
squared deviation from the mean. The average squared
deviation from the mean is larger when there is more vari-
ability among members of the population (compare the
Martians and Venusians). It is called the population vari-
ance and is denoted by o2, the square of the lower case
Greek sigma. Its precise definition for populations made
up of discrete individuals is

Sum of (value associated
with memberof
population— population mean)’

Population variance = -
Number of population members

The equivalent mathematical statement is

ol= Z(X—,U)Z
N

Note that the units of variance are the square of the
units of the variable of interest. In particular, the variance
of Martian heights is 25 cm? and the variance of Venusian
heights is 6.3 cm?* These numbers summarize the qualita-
tive conclusion that there is more variability in heights of
Martians than in heights of Venusians.

Since variances are often hard to visualize, it is more
common to present the square root of the variance, which
we might call the square root of the average squared devia-
tion from the mean. Since that is quite a mouthful, this
quantity has been named the standard deviation, . There-
fore, by definition,

Population standard deviation= \/Population variance

Sum of (value associated with member
of population — population mean)”

Number of population members
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or mathematically,
2
o= \’ 0'2 = Z()(T/l)

where the symbols are defined as before. Note that the stan-
dard deviation has the same units as the original observa-
tions. For example, the standard deviation of Martian
heights is 5 cm, and the standard deviation of Venusian
heights is 2.5 cm.

B THE NORMAL DISTRIBUTION

Table 2-1 summarizes what we found out about Martians
and Venusians. The three numbers in the table tell a great
deal: the population size, the mean height, and how
much the heights vary about the mean. The distributions
of heights on both the planets have a similar shape, so
that roughly 68% of the heights fall within 1 standard
deviation from the mean and roughly 95% within 2 stan-
dard deviations from the mean. This pattern occurs so
often that mathematicians have studied it and found that
if the observed measurement is the sum of many inde-
pendent small random factors, the resulting measure-
ments will take on values that are distributed, like the
heights we observed on both Mars and Venus. This dis-
tribution is called the normal (or Gaussian) distribution.
Its height at any given value of Xis

2
! exp {_l(—X—u)j :|
o2 2 o

Note that the distribution is completely defined by the
population mean u and population standard deviation ©.
Therefore, the information given in Table 2-1 is not just a
good abstract of the data, it is all the information one
needs to describe the population fully if the distribution of
values follows a normal distribution.

B GETTING THE DATA

So far, everything we have done has been exact because
we followed the conservative course of examining every
single member of the population. Usually it is physically
or fiscally impossible to do this, and we are limited to
examining a sample of nindividuals drawn from the pop-
ulation in the hope that it is representative of the com-
plete population. Without knowledge of the entire
population, we can no longer know the population mean,
U, and population standard deviation, . Nevertheless, we
can estimate them from the sample. To do so, however,
the sample has to be “representative” of the population
from which it is drawn.

Random Sampling

All statistical methods are built on the assumption that
the individuals included in your sample represent a ran-
dom sample from the underlying (and unobserved) popu-
lation. In a random sample every member of the population
has an equal probability (chance) of being selected for the
sample. For the results of any of the methods developed in
this book to be reliable, this assumption has to be met.
The most direct way to create a simple random sample
would be to obtain a list of every member of the popula-
tion of interest, number them from 1 to N (where Nis the
number of population members), then use a computer-
ized random number generator to select the n individuals
for the sample. Table 2-2 shows 100 random numbers
between 1 and 150 created with a random number gen-
erator. Every number has the same chance of appearing
and there is no relationship between adjacent numbers.
We could use this table to select a random sample of
Venusians from the population shown in Figure 2-2. To do
this, we number the Venusians from 1 to 150, beginning
with number 1 for the far left individual in Figure 2-2,
numbers 2 and 3 for the next two individuals in the second
column in Figure 2-2, numbers 4, 5, 6, and 7 for the indi-
viduals in the next column, until we reach the individual

B TABLE 2-1. Population Parameters for Heights of Martians and Venusians

Size of Population

Population Standard

Population Mean (cm) Deviation (cm)

200
150

Martians
Venusians

40 5.0
15 2.5
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B TABLE 2-2. One Hundred Random Numbers between 1 and 150

2 135 4 138 57
101 26 116 131 7
49 99 146 137 129
54 83 4 121 129
30 102 7 128 15
137 85 71 114 7
40 67 109 34 123
6 23 120 6 72
112 7 131 58 38
74 30 126 47 79
108 82 96 57 123
55 32 16 114 41
7 81 81 ST 21
4 52 131 62 7
7 38 55) 102 5
37 61 142 42 8
116 5 41 111 109
76 83 51 37 40
100 82 49 11 93
83 146 42 50 85
at the far right of the distribution, who is assigned the /o usians © 0 o
number 150. To obtain a simple random sample of six I
Venusians from this population, we take the first six num- : : g
bers in the table—2, 101, 49, 54, 30, and 137 —and select 49 CCIKC)
the corresponding individuals. Figure 2-3 shows the result \:\g g g g
of this process. (When a number repeats, as with the two 30 ©0 0 0 0 54
7s in the first column of Table 2-2, simply skip the repeats \: : : g ®
because the corresponding individual has already been 0 0 © 0 o 101
selected.) Sample, (n=6) ® o ® 0 o
. S & &6 &6 &
We could create a second random sample by simply 0 0 0 © %
continuing in the table beginning with the seventh entry, ® 060606 606 06
40, or starting in another column. The important point is ° : 3 : : g : : PY
not to reuse any sequence of random numbers already 5 o : : : : : g : : g o 137
used to select a sample. (As a practical matter, one would \ 00000 0 o :/:/
probably use a computerized random number generator, ) 9000050060650 00
. . ©® 000000006500 00
which automatically makes each sequence of random
numbers independent of the other sequences it gener- 1'0 1'5 2'0
ates.) In this way, we ensure that every member of the )
Height (cm)

population is equally likely to be selected for observation
in the sample.

The list of population members from which we drew the
random sample is known as a sampling frame. Sometimes
it is possible to obtain such a list (for example, a list of all
people hospitalized in a given hospital on a given day), but

FIGURE 2-3. To select n = 6 Venusians at random, we
number the entire population of N = 150 Venusians from 1
to 150, beginning with the first individual on the far left of
the population as number 1. We then select six random
numbers from Table 2-2 and select the corresponding
individuals for the sample to be observed.
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often no such list exists. When there is no list, investigators
use other techniques for creating a random sample, such
as dialing telephone numbers at random for public opin-
ion polling or selecting geographic locations at random
from maps. The issue of how the sampling frame is con-
structed can be very important in terms of how well and
to whom the results of a given study generalize to indi-
viduals beyond the specific individuals in the sample.*

The procedure we just discussed is known as a simple
random sample. In more complex designs, particularly in
large surveys or clinical trials, investigators sometimes use
stratified random samples in which they first divide the
population into different subgroups (perhaps based on
gender, race, or geographic location), then construct sim-
ple random samples within each subgroup (strata). This
procedure is used when there are widely varying numbers
of people in the different subpopulations so that obtain-
ing adequate sample sizes in the smaller subgroups would
require collecting more data than necessary in the larger
subpopulations if the sampling was done with a simple
random sample. Stratification reduces data collection
costs by reducing the total sample size necessary to obtain
the desired precision in the results, but makes the data
analysis more complicated. The basic need to create a ran-
dom sample in which each member of each subpopula-
tion (strata) has the same chance of being selected is the
same as in a simple random sample.

Bias

The primary reason for random sampling—whether a
simple random sample or a more complex stratified
sample—is to avoid bias in selecting the individuals to
be included in the sample. A bias is a systematic difference
between the characteristics of the members of the sample
and the population from which it is drawn.

Biases can be introduced purposefully or by accident.
For example, suppose you are interested in describing the
age distribution of the population. The easiest way to
obtain a sample would be to simply select the people whose
age is to be measured from the people in your biostatistics
class. The problem with this convenience sample is that you
will be leaving out everyone not old enough to be learning
biostatistics or those who have outgrown the desire to do
so. The results obtained from this convenience sample

*We will return to this issue in Chapter 12, with specific emphasis on doing
clinical research on people being served at academic medical centers.

would probably underestimate both the mean age of peo-
ple in the entire population as well as the amount of varia-
tion in the population. Biases can also be introduced by
selectively placing people in one comparison group or
another. For example, if one is conducting an experiment
to compare a new drug with conventional therapy, it would
be possible to bias the results by putting the sicker people
in the conventional therapy group with the expectation
that they would do worse than people who were not as sick
and were receiving the new drug. Random sampling pro-
tects against both these kinds of biases.

Biases can also be introduced when there is a system-
atic error in the measuring device, such as when the zero
on a bathroom scale is set too high or too low, so that all
measurements are above or below the real weight.

Another source of bias can come from the people mak-
ing or reporting the measurements if they have hopes or
beliefs that the treatment being tested is or is not superior
to the control group or conventional therapy being stud-
ied. It is common, particularly in clinical research, for
there to be some room for judgment in making and
reporting measurements. If the investigator wants the
study to come out one way or another, there is always the
possibility for reading the measurements systematically
low in one group and systematically high in the other.

The best way to avoid this measurement bias is to have
the person making the measurements blinded to which
treatment led to the data being measured. For example,
suppose that one is doing a comparison of the efficacy of
two different stents (small tubes inserted into arteries) to
keep coronary arteries (arteries in the heart) open. To
blind the measurements, the person reading the data on
artery size would not know whether the data came from a
person in the control group (who did not receive a stent),
or which of the different stents was used in a given person.

Another kind of bias is due to the placebo effect, the
tendency of people to report a change in condition simply
because they received a treatment, even if the treatment
had no biologic effect. For example, about one-third of
people given an inert injection that they thought was
an anesthetic reported a lessening of dental pain. To con-
trol for this effect in clinical experiments, it is common to

For purposes of this text, we assume that the measurements themselves
are unbiased. Random errors associated with the measurement process
are absorbed into the other random elements associated with the sam-
pling process.
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give one group a placebo so that they think that they are
receiving a treatment. Examples of placebos include an
injection of saline, a sugar pill, or surgically opening and
closing without performing any specific procedure on the
target organ. Leaving out a placebo control can seriously
bias the results of an experiment in favor of the treatment.
Ideally, the experimental subject would not know if they
were receiving a placebo or an active treatment. When the
subject does not know whether they received a placebo or
not, the subject is blinded.

When neither the investigator nor the subject knows
who received which treatment, the study is double blinded.
For example, in double-blind drug studies, people are
assigned treatments at random and neither the subject
nor the person delivering the drug and measuring the out-
come knows whether the subject received an active drug
or a placebo. The drugs are delivered with only a number
code identifying them. The code is broken only after all
the data have been collected.

Experiments and Observational Studies

There are two ways to obtain data: experiments and obser-
vational studies. Experiments permit drawing stronger
conclusions than observational studies, but often it is only
possible to do observational studies.

In an experiment, the investigator selects individuals
from the population of interest (using an appropriate
sampling frame), then assigns the selected individuals to
different treatment groups, applies the treatments, and
measures the variables of interest. Drug trials where peo-
ple are randomly assigned to receive conventional therapy
or a drug that is thought to improve their condition are
common biomedical experiments. Since the only system-
atic difference between the different treatment groups is
the treatment itself, one can be reasonably confident that
the treatment caused the observed differences.

Selecting people and randomly assigning them to dif-
ferent experimental conditions is not always possible or
ethical. In an observational study the investigators obtain
data by simply observing events without controlling them.
Such studies are prone to two potentially serious prob-
lems. First, the groups may vary in ways the investigators
do not notice or choose to ignore and these differences,
rather than the treatment itself, may account for the dif-
ferences the investigators find. Second, such studies can be
subject to bias in patient recall, investigator assessment,
or selection of the treatment group or the control group.

Observational studies do, however, have advantages.
First, they are relatively inexpensive because they are often
based on reviews of existing information or information
that is already being collected for other purposes (like
medical records) and because they generally do not
require direct intervention by the investigator. Second,
ethical considerations or prevailing medical practice can
make it impossible to carry out active manipulation of the
variable under study.

Because of the potential difficulties in all observa-
tional studies, it is critical that the investigators explicitly
specify the criteria they used for classifying each subject
in the control or case group. Such specifications help
minimize biases when the study is done as well as help
you, as the consumer of the resulting information, judge
whether the classification rules made sense.

For example, epidemiologists have compared the rates
of lung cancer and heart disease in nonsmokers whose
spouses or coworkers smoke with the rates observed in
nonsmokers living in smokefree environments. These
studies have shown higher rates of lung cancer and heart
disease in the people exposed to secondhand smoke, lead-
ing to the conclusion that secondhand smoke increases
the risk of disease (Fig. 2-4A).

When doing an observational study, however, one always
has to worry that the association observed in the data is not
due to a cause-and-effect link between the two variables (in
this case, secondhand smoke causing lung cancer), but
rather the presence of some unobserved confounding vari-
able that was related causally to the other two variables and
so makes it appear that the two observed variables were
causally linked when they were not (Fig. 2-4B). For exam-
ple, a tobacco industry consultant has claimed that non-
smokers married to smokers are more likely to own pet
birds and that the birds spread diseases that increase the risk
of lung cancer.*

The only way to completely exclude the possibility of
confounding variables would be to conduct a randomized
trial in which nonsmokers were randomly selected from the
population, randomly allocated to marry other nonsmokers
or smokers, then monitored for many years to see who devel-
oped heart disease or lung cancer. (Presumably the owner-
ship of pet birds would be randomly distributed between the
people assigned to marry nonsmokers and assigned to marry
smokers.) Such an experiment could never be done.

*Gardiner A, Lee P. Pet birds and lung cancer. BMJ. 1993;306(6869):60.
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It is, however, still possible to conclude that there are
causal links between exposure to some agent (such as sec-
ondhand smoke) and an outcome (such as lung cancer)
from observational studies. Doing so requires studies that
account for known confounding variables either through
an experimental design that separates people based on the
effect of the confounding variable (by stratifying the con-
founding variable) or by controlling for their effects using
more advanced statistical procedures,* and considering
other related experimental evidence that helps explain the
biologic mechanisms that cause the disease. These consid-
erations have led reputable scientists and health authori-
ties to conclude that secondhand smoke causes both lung
cancer and heart disease.

The statistical techniques for analyzing data collected
from experiments and observational studies are the same.
The differences lie in how you interpret the results, particu-
larly how confident you can be in using the word “cause.”

Randomized Clinical Trials

One procedure, called a randomized clinical trial, is the
method of choice for evaluating therapies because it

*For a discussion of the statistical approaches to control for confounding
variables, see Glantz SA, Slinker BK. Regression with a qualitative depen-
dent variable. In: Primer of Applied Regression and Analysis of Variance,
2nd ed. New York: McGraw-Hill; 2001:chap 12.

FIGURE 2-4. Panel A shows the situation that
would exist if breathing secondhand smoke
caused lung cancer. Panel B shows the situation
that would exist if, as suggested by a tobacco
industry consultant, people exposed to
secondhand smoke were more likely to own
pet birds and the birds carried diseases that
caused lung cancer, while there was no
connection between breathing secondhand
smoke and lung cancer. Since owning a pet
bird would be linked both to exposure to
secondhand smoke and lung cancer this
(unobserved) confounding variable could make
it appear that secondhand smoke caused lung
cancer when, in fact, there was no link.

avoids the selection biases that can creep into observa-
tional studies. The randomized clinical trial is an example
of what statisticians call an experimental study because the
investigator actively manipulates the treatment under
study, making it possible to draw much stronger conclu-
sions than are possible from observational studies about
whether or not a treatment produced an effect. Experi-
mental studies are the rule in the physical sciences and
animal studies in the life sciences but are less common in
studies involving human subjects.

Randomization reduces biases that can appear in obser-
vational studies and, since all clinical trials are prospective,
no one knows how things will turn out at the beginning.
This fact also reduces the opportunity for bias. Perhaps for
these reasons, randomized clinical trials often show thera-
pies to be of little or no value, even when observational
studies have suggested that they were efficacious.’

Why, then, are not all therapies subjected to random-
ized clinical trials? Once something has become part of
generally accepted medical practice—even if it did so

For a readable and classic discussion of the place of randomized clinical
trials in providing useful clinical knowledge, together with a sobering
discussion of how little of commonly accepted medical practice has ever
been actually shown to do any good, see Cochran K. Effectiveness and
Efficiency: Random Reflections on Health Services. London: Nuffield Pro-
vincial Hospitals Trust; 1972.
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without any objective demonstration of its value—it is
extremely difficult to convince patients and their physi-
cians to participate in a study that requires withholding it
from some of the patients. Second, randomized clinical
trials are always prospective; a person recruited into the
study must be monitored for some time, often many years.
People move, lose interest, or die for reasons unrelated to
the study. Simply keeping track of people in a randomized
clinical trial is often a major task.

To collect enough patients to have a meaningful sam-
ple, it is often necessary to have many groups at different
institutions participating. While it is great fun for the
people running the study, it is often just one more task
for the people at the collaborating institutions. All these
factors often combine to make randomized clinical trials
expensive and difficult to execute. Nevertheless, when
done well, they provide the most definitive answers to
questions regarding the relative efficacy of different
treatments.

B HOW TO ESTIMATE THE MEAN
AND STANDARD DEVIATION
FROM A SAMPLE

Having obtained a random sample from a population of
interest, we are ready to use information from that sample
to estimate the characteristics of the underlying popula-
tion. The estimate of the population mean is called the
sample mean and is defined analogously to the population
mean:

Sum of values, e.g., heights, of
each observation in sample

Sample mean = - -
Number of observations in sample

The equivalent mathematical statement is

x=2X
n
in which the bar over the X denotes that it is the mean of
the n observations of X.
The estimate of the population standard deviation is
called the sample standard deviation s and is defined as

Sample Sumof (valueof observationin
standard the sample —samplemean)’
deviation=

Numberof observationsinsample—1

or, mathematically,*

(X -X)
n—1

s=

(The standard deviation is also often denoted as SD.)

The definition of the sample standard deviation, s, dif-
fers from the definition of the population standard devia-
tion o in two ways: (1) the population mean f has been
replaced by our estimate of it, the sample mean X, and
(2) we compute the “average” squared deviation of a sam-
ple by dividing by n — 1 rather than n. The precise reason
for dividing by n — 1 rather than » requires substantial
mathematical arguments, but we can present the follow-
ing intuitive justification: The sample will never show as
much variability as the entire population and dividing by
n— 1 instead of n compensates for the resultant tendency
of the sample standard deviation to underestimate the
population standard deviation.

In conclusion, if you are willing to assume that the
sample was drawn from a normal distribution, summarize
data with the sample mean and sample standard devia-
tion, the best estimates of the population mean and popu-
lation standard deviation, because these two parameters
completely define the normal distribution. When there is
evidence that the population under study does not follow
a normal distribution, summarize data with the median
and upper and lower percentiles discussed later in this
chapter.

B HOW GOOD ARE THESE ESTIMATES?

The mean and standard deviation computed from a ran-
dom sample are estimates of the mean and standard devi-
ation of the entire population from which the sample was
drawn. There is nothing special about the specific random
sample used to compute these statistics, and different ran-
dom samples will yield slightly different estimates of the
true population mean and standard deviation. To quanti-
tate how accurate these estimates are likely to be, we can
compute their standard errors. It is possible to compute a
standard error for any statistic, but here we shall focus on
the standard error of the mean. This statistic quantifies the

*All equations in the text will be presented in the form most conducive
to understanding statistical concepts. Often there is another, mathemati-
cally equivalent, form of the equation which is more suitable for compu-
tation. These forms are tabulated in Appendix A.
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certainty with which the mean computed from a random
sample estimates the true mean of the population from
which the sample was drawn.

What is the standard error of the mean?

Figure 2-5A shows the same population of Martian
heights we considered before. Since we have complete
knowledge of every Martian’s height, we will use this
example to explore how accurately statistics computed
from a random sample describe the entire population.
Suppose that we draw a random sample of 10 Martians
from the entire population of 200, then compute the sam-
ple mean and sample standard deviation. The 10 Martians
in the sample are indicated by solid points in Figure 2-5A.

Figure 2-5B shows the results of this random sample as it
might be reported in a journal article, together with the
sample mean ( X = 41.5 cm) and sample standard devia-
tion (s = 3.8 cm). The values are close, but not equal, to
the population mean (u = 40 cm) and standard deviation
(o=5cm).

There is nothing special about this sample—after all,
it was drawn at random—so let us consider a second ran-
dom sample of 10 Martians from the same population of
200. Figure 2-5C shows the results of this sample, with the
corresponding Martians that comprise the sample identi-
fied in Figure 2-5A. While the mean and standard devia-
tion, 36 and 5 cm, of this second random sample are also
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FIGURE 2-5. If one draws three different samples of 10 members each from a single population,
one will obtain three different estimates of the mean and standard deviation.
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similar to the mean and standard deviation of the whole
population, they are not the same. Likewise, they are also
similar, but not identical, to those from the first sample.

Figure 2-5D shows a third random sample of 10 Mar-
tians, identified in Figure 2-5A with circles containing
dots. This sample leads to estimates of 40 and 5 cm for the
mean and standard deviation.

Now, we make an important change in emphasis.
Instead of concentrating on the population of all 200
Martians, let us examine the means of all possible random
samples of 10 Martians. We have already found three pos-
sible values for this mean, 41.5, 36, and 40 cm, and there
are many more possibilities. Figure 2-6 shows these three
means, using the same symbols as Figure 2-5. To better
understand the amount of variability in the means of
samples of 10 Martians, let us draw another 22 random
samples of 10 Martians each and compute the mean
of each sample. These additional means are plotted in
Figure 2-6 as open points.

Now that we have drawn 25 random samples of 10
Martians each, have we exhausted the entire population of
200 Martians? No. There are more than 10 different ways
to select 10 Martians at random from the population of
200 Martians.

Look at Figure 2-6. The collection of the means of
25 random samples, each of 10 Martians, has a roughly
bell-shaped distribution, which is similar to the normal
distribution. When the variable of interest is the sum of
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FIGURE 2-6. If one draws more and more samples—each
with 10 members—from a single population, one eventually
obtains the population of all possible sample means. This
figure illustrates the means of 25 samples of 10 Martians
each drawn from the population of 200 Martians shown in
Figures 2-1 and 2-5A. The means of the three specific
samples shown in Figure 2-5 are shown using corresponding
symbols. This new population of all possible sample means
will be normally distributed regardless of the nature of

the original population; its mean will equal the mean of

the original population; its standard deviation is called the
standard error of the mean.

many other independent random variables, its distribu-
tion will tend to be normal, regardless of the distributions
of the variables used to form the sum. Since the sample
mean is just such a sum, its distribution will tend to
be normal, with the approximation improving as the sam-
ple size increases. (If the sample were drawn from a nor-
mally distributed population, the distribution of the
sample means would have a normal distribution regard-
less of the sample size.) Therefore, it makes sense to describe
the data in Figure 2-6 by computing their mean and
standard deviation. Since the mean value of the 25 points
in Figure 2-6 is the mean of the means of 25 samples, we
will denote it X. The standard deviation is the standard
deviation of the means of 25 independent random samples
of 10 Martians each, and so we will denote it 65 Using the
formulas for mean and standard deviation presented earlier,
we compute Y; =40cmand oy = 1.6 cm.

The mean of the sample means X5 is (within mea-
surement and rounding error) equal to the mean height
of the entire population of 200 Martians from which we
drew the random samples. This is quite a remarkable
result, since X is not the mean of a sample drawn directly
from the original population of 200 Martians; X is the
mean of 25 random samples of size 10 drawn from the
population consisting of all 106 possible values of the mean
of random samples of size 10 drawn from the original popu-
lation of 200 Martians.

Is o equal to the standard deviation ¢ of the popula-
tion of 200 Martians? No. In fact, it is quite a bit smaller;
the standard deviation of the collection of sample means
05 is 1.6 cm while the standard deviation for the whole
population is 5 cm. Just as the standard deviation of the
original sample of 10 Martians sis an estimate of the vari-
ability of Martians’ heights, o is an estimate of the vari-
ability of possible values of means of samples of 10 Martians.
Since when one computes the mean, extreme values tend
to balance each other, there will be less variability in the
values of the sample means than in the original popula-
tion. o5 is a measure of the precision with which a sam-
ple mean X estimates the population mean g. We might
name oy “standard deviation of means of random sam-
ples of size 10 drawn from the original population.” To be
brief, statisticians have coined a shorter name, the stan-
dard error of the mean (SEM).

Since the precision with which we can estimate the
mean increases as the sample size increases, the standard
error of the mean decreases as the sample size increases.
Conversely, the more variability in the original population,
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the more variability will appear in possible mean values of
samples; therefore, the standard error of the mean increases
as the population standard deviation increases. The true
standard error of the mean of samples of size n drawn
from a population with standard deviation o is*

Oy=—F

X \/;
The best estimate of 9% from a single sample is

N
5}=$

Since the possible values of the sample mean tend to
follow a normal distribution, the true (and unobserved)
mean of the original population will lie within 2 standard
errors of the sample mean about 95% of the time.

As already noted, mathematicians have shown that the
distribution of mean values will always approximately fol-
low a normal distribution regardless of how the popula-
tion from which the original samples were drawn is
distributed. We have developed what statisticians call the
Central Limit Theorem. It says:

¢ The distribution of sample means will be approximately

normal regardless of the distribution of values in the

original population from which the samples were drawn.
* The mean value of the collection of all possible sample
means will equal the mean of the original population.
The standard deviation of the collection of all possible
means of samples of a given size, called the standard error
of the mean, depends on both the standard deviation of
the original population and the size of the sample.

Figure 2-7 illustrates the relationship between the
sample mean, the sample standard deviation, and the
standard error of the mean and how they vary with
sample size as we measure more and more Martians."
As we add more Martians to our sample, the sample
mean X and standard deviation s estimate the popula-

*This equation is derived in Chapter 4.

TFigure 2-7 was obtained by selecting two Martians from Figure 2-1 at
random, then computing ¥, s, and ¢—. Then one more Martian was
selected and the computations done agdin. Then, a fourth, a fifth, and so
on, always adding to the sample already drawn. Had we selected different
random samples or the same samples in a different order, Figure 2-7
would have been different.

tion mean p and standard deviation o with increasing
precision. This increase in the precision with which the
sample mean estimates the population mean is reflected
by the smaller standard error of the mean with larger
sample sizes. Therefore, the standard error of the mean
tells not about variability in the original population, as
the standard deviation does, but about the certainty
with which a sample mean estimates the true popula-
tion mean.

The standard deviation and standard error of the
mean measure two very different things and are often
confused. Most medical investigators summarize their
data with the standard error of the mean because it is
always smaller than the standard deviation. It makes
their data look better. However, unlike the standard
deviation, which quantifies the variability in the popula-
tion, the standard error of the mean quantifies uncer-
tainty in the estimate of the mean. Since readers are
generally interested in knowing about the population,
data should generally not be summarized with the stan-
dard error of the mean.

To understand the difference between the standard
deviation and standard error of the mean and why one
ought to summarize data using the standard deviation,
suppose that in a sample of 20 patients an investigator
reports that the mean cardiac output was 5.0 L/min with
a standard deviation of 1 L/min. Since about 95% of all
population members fall within about 2 standard devia-
tions of the mean, this report would tell you that, assum-
ing that the population of interest followed a normal
distribution, it would be unusual to observe a cardiac
output below about 3 or above about 7 L/min. Thus, you
have a quick summary of the population described in the
paper and a range against which to compare specific
patients you examine. Unfortunately, it is unlikely that
these numbers would be reported, the investigator being
more likely to say that the cardiac output was 5.0 = 0.22
(SEM) L/min. If you confuse the standard error of the
mean with the standard deviation, you would believe
that the range of most of the population was narrow
indeed—4.56 to 5.44 L/min. These values describe the
range which, with about 95% confidence, contains the
mean cardiac output of the entire population from
which the sample of 20 patients was drawn. (Chapter 7
discusses these ideas in detail.) In practice, one generally
wants to compare a specific patient’s cardiac output not
only with the population mean but with the spread in
the population taken as a whole.
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FIGURE 2-7. As the size of a random sample of Martians drawn from the population depicted in
Figure 2-1 grows, the precision with which the sample mean and sample standard deviation, X
and s, estimate the true population mean and standard deviation, i and o, increases. This
increasing precision appears in two ways: (1) the difference between the statistics computed
from the sample (the points) moves closer to the true population values (the lines), and (2) the
size of the standard error of the mean decreases.

B PERCENTILES 4.5. cm. l?y c'omp'arison with. Tablef 2-1, Jovians appear
quite similar in height to Martians, since these two param-
Armed with our understanding of how to describe nor-  eters completely specify a normal distribution.
mally distributed populations using the mean and stan- The actual distribution of heights on Jupiter, however,
dard deviation, we extend our research efforts and tells a different story. Figure 2-8A shows that, unlike those
measure the heights of all Jupiter’s inhabitants but also to  living on the other two planets, a given Jovian is not
compute the mean and standard deviation of the heights  equally likely to have a height above average as below aver-
of all Jovians. The resulting data show the mean height to  age; the distribution of heights of all population members
be 37.6 cm and the standard deviation of heights to be  is no longer symmetric but skewed. The few individuals
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FIGURE 2-8. When the population values are not distributed symmetrically about the mean,
reporting the mean and standard deviation can give the reader an inaccurate impression of the
distribution of values in the population. Panel A shows the true distribution of the heights of the
100 Jovians (note that it is skewed toward taller heights). Panel B shows a normally distributed
population with 200 members and the same mean and standard deviation as in panel A.
Despite the fact that the means and standard deviations are the same, the distributions of

heights in the two populations are quite different.

who are much taller than the rest increase the mean and
standard deviation in a way that led us to think that most
of the heights were higher than they actually are and that
the variability of heights was greater than it actually is.
Specifically, Figure 2-8B shows a population of 100 indi-
viduals whose heights are distributed according to a
normal or Gaussian distribution with the same mean and
standard deviation as the 100 Jovians in Figure 2-8A. It is
quite different. So, although we can compute the mean
and standard deviation of heights of Jupiter’s— or, for
that matter, any— population, these two numbers do not
summarize the distribution of heights nearly as accurately

as they did when the heights in the population followed a
normal distribution.

An alternative approach that better describes such data
is to report the median. The median is the value that half
the members of the population fall below. Figure 2-9A
shows that half the Jovians are shorter than 36 cm; 36 cm
is the median. Since 50% of the population values fall
below the median, it is also called the 50th percentile.

Calculation of the median and other percentiles is sim-
ple. First, list the n observations in order. The median, the
value that defines the lower half of the observations, is
simply the .5 (n + 1) observation. When there are an odd



HOW TO SUMMARIZE DATA 21

A
Median (50th percentile)
()
© e
© e
© © ©
©000e
©©00e
©0© 000 e
0000 e
0000 e
000000
000000006 00
00000 0OG0OGEOGS
00000 0OGEOGBEOGEGIEOGEOSNOGO
©000O0000O0OGIFOGDOGNIOGOINIONOGNOGNOGEOMNWNDL
25 30 35 40 45 50
B
25th percentile 75th percentile
[ J
( N )
[ N
©ee0
ONON I I}
(ONON NI
@0 e o000
@0e o000
@0 e o060
(ONON I I I
@000 00600
©@ce00e0000O0
ONONON I I B I NONORONONONON)
OCNONON I N B N NoNoNNo N RO NINoNO NN NN
25 30 35 40 45 50
Height (cm)

FIGURE 2-9. One way to describe a skewed distribution is with percentiles. The median is the
point that divides the population in half. Panel A shows that 36 cm is the median height on
Jupiter. Panel B shows the 25th and 75th percentiles, the points locating the lowest and highest
quarter of the heights, respectively. The fact that the 25th percentile is closer to median than
the 75th percentile indicates that the distribution is skewed toward higher values.

number of observations, the median falls on one of the
observations. For example, if there are 27 observations,
the .5 (27 + 1) = 14th observation (listed from smallest to
largest) is the median. When there is an even number of
observations, the median falls between two observations.
For example, if there are 40 observations, the median
would be the .5 (40 + 1) = 20.5th observation. Since there

is no 20.5th observation, we take the average of 20th and
21st observation.

Other percentile points are defined analogously. For
example, the 25th percentile point, the point that defines
the lowest quarter of the observations, is just the .25 (n+ 1)
observation. Again, if the value falls between two observa-
tions, take the mean of the two surrounding observations.
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FIGURE 2-10. Percentile points of the normal distribution.

In general, the pth percentile point is the (p/100)(n + 1)
observation.*

To give some indication of the dispersion of heights in
the population, report the value that separates the lowest
(shortest) 25% of the population from the rest and the
value that separates the shortest 75% of the population
from the rest. These two points are called the 25th and 75th
percentile points, respectively, and the interval they define
is called the interquartile range. For the Jovians, Figure 2-9B
shows that these percentiles are 34 and 40 cm. While
these three numbers (the 25th, 50th, and 75th percentile

*An alternative definition for the percentile value when the percentile
point falls between two observations is to interpolate between the obser-
vation above and below the percentile point, rather than just averaging
the observations. For example, in a problem in which there are 14 data
points, the 75th percentile would be the (p/100)(n + 1) = (75/100)(14 + 1)
= 11.25 observation. Using the approach in the text, we would just aver-
age the 11th and 12th observation. Using the alternative definition we
would use the value 0.25 of the way between the 11th and 12th observa-
tions. If the 11th observation is 34 and the 12th observation is 40, using
the definition of percentile in the text, we would estimate the 75th per-
centile as (34 + 40)/2 = 37. Interpolating between the two observations,
we would compute the 75th percentile as 34 + 0.25(40 — 34) = 35.5. (Ap-
pendix A describes how to interpolate in general.) Most computer pro-
grams use the interpolation approach. As a practical matter, when sample
sizes are large, there is little or no difference between the two different
ways of computing percentiles.

points, 34, 36, and 40 cm) do not precisely describe the
distribution of heights, they do indicate what the range of
heights is and that there are a few very tall Jovians but not
many very short ones.

Although these percentiles are often used, one could
equally well report the 5th and 95th percentile points, or,
for that matter, report the 5th, 25th, 50th, 75th, and 95th
percentile points.

Computing the percentile points of a population is a
good way to see how close to a normal distribution it is.
Recall that we said that in a population that exhibits a
normal distribution of values, about 95% of the popula-
tion members fall within 2 standard deviations of the
mean and about 68% fall within 1 standard deviation of
the mean. Figure 2-10 shows that, for a normal distribu-
tion, the values of the associated percentile points are:

Mean — 2 standard deviation
Mean — 1 standard deviation
Mean —0.67 standard deviation
Mean

Mean + 0.67 standard deviation
Mean + 1 standard deviation
Mean + 2 standard deviation

2.5th percentile

16th percentile

25th percentile

50th percentile (median)
75th percentile

84th percentile

97.5th percentile

If the values associated with the percentiles are not too
different from what one would expect on the basis of the
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mean and standard deviation, the normal distribution is
a good approximation to the true population and then the
mean and standard deviation describe the population
adequately.

Why care whether or not the normal distribution is a
good approximation? Because many of the statistical pro-
cedures used to test hypotheses—including the ones we
will develop in Chapters 3, 4, and 9—require that the
population follow a normal distribution at least approxi-
mately for the tests to be reliable. (Chapters 10 and
11 present alternative tests that do not require this
assumption.)

Pain Associated with Diabetic Neuropathy

Peripheral neuropathy is a complication of diabetes mel-
litus in which peripheral nerves are damaged, leading to
many symptoms, including spasms, tingling, numbness
and pain. Because conventional treatments are often inef-
fective or have serious side effects, Dinesh Selvarajah and
colleagues* conducted a randomized placebo-controlled
double blind clinical trial of a cannabis-based medicinal
extract in people with intractable pain.

They recruited people for the study who had not had
their pain controlled using other drugs and randomly
assigned them to receive the cannabis extract or a placebo
for 12 weeks. The use of a placebo was particularly impor-
tant because of the placebo effect, when people report feel-
ing better because they are being treated, even if the
treatment had no biological effect on the underlying dis-
ease process. The experiment was also double blind, with
neither the experimental subjects nor the investigators
knowing who was receiving the drug or placebo. Double
blinding was particularly important because the outcome
was a subjective measure of pain that could be biased not
only by the placebo effect, but a desire on the part of the
experimental subjects to please the investigators by
reporting less pain. It was also important that the investi-
gators were blinded to the treatment group to avoid bias-
ing clinical assessments or subtly encouraging the
experimental subjects to bias their reported subjective
pain scores.

*Selvarajah D, Gandhi R, Emery CJ, Tesfaye S. Randomized placebo-
controlled double-blind clinical trial of cannabis-based medicinal prod-
uct (Sativex) in painful diabetic neuropathy. Diabetes Care 2010;33:
128-130.

B TABLE 2-3. Measured Pain in 29 People with
Diabetic Neuropathy (n = 29)

8 16 37
46 23 13
61 58 8
28 18 28

7 51 25
93 26 4
10 19 12

7 20 12

100 54

The investigators used standard questionnaires that
measured superficial, deep and muscular pain, and then
averaged the three scores to get a total pain score. Higher
scores indicate greater pain. The data for the placebo
appear in Table 2-3.

Figure 2-11 shows a plot of these data in a way that
shows how they are distributed along the pain scale. Such
a plot is called a histogram.” Simply looking at this histo-
gram suggests that the data are not drawn from a nor-
mally distributed population because the observations do
not seem to be symmetrically distributed about the mean
following the bell-shaped cure that describes the normal
distribution.

As Box 2-1 shows, the mean pain score is 27.4 with a
standard deviation of 24.5. If these data had been drawn
from a normal distribution, about 95% of population
members would have been within about 2 standard devi-
ations of the mean, from about 27.4 — 2 X 24.5 = -21.6
to about 27.4 + 2 X 24.5 = 76.4. The pain score ranges
from 0 to 100, while the upper end of this range is plau-
sible, the lower end is not: the pain score cannot be neg-
ative, so the population is highly unlikely to be normally
distributed. (Such a comparison can be used as an infor-
mal test for normality when the measurement cannot be
negative.)

In general histograms can display the data over a range of values in each
bin. The histogram in Figure 2-11 that has bins 1 unit wide (i.e., that
shows the number of observations at each observed value) is also called
a dot plot.
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FIGURE 2-11. Level of pain reported among people with diabetic neuropathy after 12 weeks of taking a
placebo.

BOX 2-1 - Descriptive Statistics for the Data on Diabetic Neuropathy in Table 2-3

Sorted Data from Table 2-3

Data Observation Number Data Observation Number
4 1 20 16
4 23 17
7 3 25 18
7 4 26 19
8 5 28 20
8 6 28 21

10 7 33 22

12 8 37 23

12 9 46 24

13 10 51 25

13 11 54 26

16 12 61 27

18 13 93 28

19 14 100 29

19 15

To estimate the mean, we simply add up all the observations and divide by the number of observations. From
the data in Table 2-3,

_ XX _13+8+46+ -+ +12+12
n 29

=27.4

X

Therefore the estimate of the standard deviation from the sample is

oo \/Z(x -X)? J(13—27.4)2 +(13-27.47° + (46 -27.4)° + -+ - +(12-27.47° +(12-27.4)° _ L

n-1 29-1

To compute the median and percentile points, we first sort the observations in Table 2-3 in ascending order, as shown
in the table in this box. The median, 50th percentile point, of the n = 29 observations is the (p/100)(n + 1) =
(50/100)(29 + 1) = 14th data point, a value of 19. The 25th percentile is the (25/100)(29 + 1) = 7.5th point.
Taking the mean of the 7th and 8th observation, we find that the 25th percentile point is (12 + 12)/2 = 11. Like-
wise, the 75th percentile point is the (75/100)(29 + 1) = 22.5th observation. Taking the mean of the 22nd and
23rd observations, we find that the 75th percentile point is (33 + 37)/2 = 35.
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Because these data do not seem to follow a normal dis-
tribution, the best way to describe them is with the median
and top and bottom quartiles. Box 2-1 shows that the
median of these data is 19 and the 25th and 75th percen-
tile points are 11 and 35. The fact that the 25th percentile
point is much closer to the median than the 75th percen-
tile point is a reflection of the fact that the distribution is
not symmetrical, which is further evidence that the under-
lying population is not normally distributed.

B SUMMARY

When a population follows a normal distribution, we can
describe its location and variability completely with two
parameters—the mean and standard deviation. When the
population does not follow a normal distribution at least
roughly, it is more appropriate to describe it with the median
and other percentiles. Since one can rarely observe all mem-
bers of a population, we will estimate these parameters from
a sample drawn at random from the population. The stan-
dard error quantifies the precision of these estimates. For
example, the standard error of the mean quantifies the pre-
cision with which the sample mean estimates the population
mean.

In addition to being useful for describing a population
or sample, these numbers can be used to estimate how
compatible measurements are with clinical or scientific
assertions that an intervention affected some variable. We
now turn our attention to this problem.

B PROBLEMS

2-1 The pain scores for the people treated with the can-
nabis medicinal in the study discussed earlier in this chap-
ter are 90, 10, 45, 70, 13, 27, 11, 70, 14, 15, 13, 75, 50, 30,
80, 40, 29, 13, 9, 7, 20, 85, 55, and 94. Find the mean,
median, standard deviation, and 25th and 75th percen-
tiles. Do these data seem to be drawn from a normally
distributed population? Why or why not?

2-2 Viral load of HIV-1 is a known risk factor for hetero-
sexual transmission of HIV; people with higher viral loads of
HIV-1 are significantly more likely to transmit the virus to
their uninfected partners. Thomas Quinn and associates.*

*Quinn TC, Wawer MJ, Sewankambo N, Serwadda D, Li C, Wabwire-
Mangen F, Meehan MO, Lutalo T, Gray RH. Viral load and heterosexual
transmission of human immunodeficiency virus type 1. N Engl | Med.
2000;342:921-929.

studied this question by measuring the amount of HIV-1
RNA detected in blood serum. The following data repre-
sent HIV-1 RNA levels in the group whose partners sero-
converted, which means that an initially uninfected
partner became HIV positive during the course of the
study; 79,725, 12,862, 18,022, 76,712, 25,6440, 14,013,
46,083, 6808, 85,781, 1251, 6081, 50,397, 11,020, 13,633,
1064, 496, 433, 25,308, 6616, 11,210, 13,900 RNA copies/
mL. Find the mean, median, standard deviation, and 25th
and 75th percentiles of these concentrations. Do these
data seem to be drawn from a normally distributed popu-
lation? Why or why not?

2-3 When data are not normally distributed, researchers
can sometimes transform their data to obtain values that
more closely approximate a normal distribution. One
approach to this is to take the logarithm of the observations.
The following numbers represent the same data described in
Prob. 2-1 following log (base 10) transformation: 4.90,4.11,
4.26, 4.88, 5.41, 4.15, 4.66, 3.83, 4.93, 3.10, 3.78, 4.70, 4.04,
4.13,3.03,5.70, 4.40, 3.82,4.05,4.14. Find the mean, median,
standard deviation, and 25th and 75th percentiles of these
concentrations. Do these data seem to be drawn from a
normally distributed population? Why or why not?

2-4 Polychlorinated biphenyls (PCBs) are a class of
environmental chemicals associated with a variety of
adverse health effects, including intellectual impairment
in children exposed in utero while their mothers were
pregnant. PCBs are also one of the most abundant con-
taminants found in human fat. Tu Binh Minh and col-
leagues® analyzed PCB concentrations in the fat of a
group of Japanese adults. They detected 1800, 1800,
2600, 1300, 520, 3200, 1700, 2500, 560, 930, 2300, 2300,
1700, 720 ng/g lipid weight of PCBs in the people they
studied. Find the mean, median standard deviation, and
25th and 75th percentiles of these concentrations. Do
these data seem to be drawn from a normally distrib-
uted population? Why or why not?

2-5 Sketch the distribution of all possible values of the
number on the upright face of a die. What is the mean of
this population of possible values?

Minh TB, Watanabe M, Tanabe S, Yamada T, Hata J, Watanabe S. Occur-
rence of tris (4-chlorophenyl)methane, tris (4-chlorophenyl)methanol,
and some other persistent organochlorines in Japanese human adipose
tissue. Environ Health Perspect. 2000;108:599-603.
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2-6 Roll a pair of dice and note the numbers on each of the
upright faces. These two numbers can be considered a
sample of size 2 drawn from the population described in
Prob. 2-4. This sample can be averaged. What does this

average estimate? Repeat this procedure 20 times and plot
the averages observed after each roll. What is this distribu-
tion? Compute its mean and standard deviation. What do
they represent?
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Groups

Statistical methods are used to summarize data and test
hypotheses with those data. Chapter 2 discussed how to
use the mean, standard deviation, median, and percentiles
to summarize data and how to use the standard error of
the mean to estimate the precision with which a sample
mean estimates the population mean. Now we turn our
attention to how to use data to test scientific hypotheses.
The statistical techniques used to perform such tests are
called tests of significance; they yield the highly prized P
value. We now develop procedures to test the hypothesis
that, on the average, different treatments all affect some
variable identically. Specifically, we will develop a proce-
dure to test the hypothesis that diet has no effect on the
mean cardiac output of people living in a small town. Stat-
isticians call this hypothesis of no effect the null hypothesis.

The resulting test can be generalized to analyze data
obtained in experiments involving any number of treat-
ments. In addition, it is the archetype for a whole class of
related procedures known as analysis of variance.

B THE GENERAL APPROACH

To begin our experiment, we randomly select four groups
of seven people each from a small town with 200 healthy
adult inhabitants. All participants give informed consent.
People in the control group continue eating normally;
people in the second group eat only spaghetti; people in
the third group eat only steak; and people in the fourth
group eat only fruit and nuts. After 1 month, each person

CHAPTER

has a cardiac catheter inserted and his or her cardiac out-
put is measured.

As with most tests of significance, we begin with the
hypothesis that all treatments (diets) have the same
effect (on cardiac output). Since the study includes a
control group (as experiments generally should), this
hypothesis is equivalent to the hypothesis that diet has
no effect on cardiac output. Figure 3-1 shows the distri-
bution of cardiac outputs for the entire population, with
each individual’s cardiac output represented by a circle.
The specific individuals who were randomly selected for
each diet are indicated by shaded circles, with different
shading for different diets. Figure 3-1 shows that the null
hypothesis is, in fact, true. Unfortunately, as investigators
we cannot observe the entire population and are left with
the problem of deciding whether or not to reject the null
hypothesis from the limited data shown in Figure 3-2.
There are obviously differences between the samples; the
question is: Are these differences due to the fact that the
different groups of people ate differently or are these differ-
ences simply a reflection of the random variation in cardiac
output between individuals?

To use the data in Figure 3-2 to address this question,
we proceed under the assumption that the null hypothesis
that diet has no effect on cardiac output is correct. Since we
assume that it does not matter which diet any particular
individual ate, we assume that the four experimental
groups of seven people each are four random samples of
size 7 drawn from a single population of 200 individuals.

27
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Since the samples are drawn at random from a population
with some variance, we expect the samples to have different
means and standard deviations, but if our null hypothesis
that the diet has no effect on cardiac output is true, the
observed differences are simply due to random sampling.

FIGURE 3-1. The values of
cardiac output associated with all
200 members of the population
of a small town. Since diet does
not affect cardiac output, the four
groups of seven people each
selected at random to participate
in our experiment (control,
spaghetti, steak, and fruit and
nuts) simply represent four
random samples drawn from a
single population.

Forget about statistics for a moment. What is it about

different samples that leads you to believe that they are
representative samples drawn from different populations?
Figures 3-2, 3-3, and 3-4 show three different possible sets
of samples of some variable of interest. Simply looking at

FIGURE 3-2. An investigator
cannot observe the entire
population but only the four
samples selected at random

for treatment. This figure
shows the same four groups
of individuals as in Figure 3-1
with their means and
standard deviations as they
would appear to the
investigator. The question

o
Control bl hd hd hdlid
O O
Spaghetti @ @ @ oD
®
Steak ® & ® ® ® ®
Fruit and nuts ©
—
®
o O

Means of samples

facing the investigator is: Are
the observed differences due
to the different diets or simply
random variation? The figure
also shows the collection of
sample means together with
their standard deviation,
which is an estimate of the
standard error of the mean.
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FIGURE 3-3. The four samples shown are identical to those in Figure 3-2 except that the
variability in the mean values has been increased substantially. The samples now appear to
differ from each other because the variability between the sample means is larger than one
would expect from the variability within each sample. Compare the relative variability in mean
values with the variability within the sample groups with that seen in Figure 3-2.

these pictures makes most people think that the four sam-
ples in Figure 3-2 were all drawn from a single population,
while the samples in Figures 3-3 and 3-4 were not. Why?
The variability within each sample, quantified with the
standard deviation, is approximately the same. In Figure
3-2, the variability in the mean values of the samples is
consistent with the variability one observes within the
individual samples. In contrast, in Figures 3-3 and 3-4, the
variability among sample means is much larger than one
would expect from the variability within each sample.
Notice that we reach this conclusion whether all (Fig. 3-3)
or only one (Fig. 3-4) of the sample means appear to differ
from the others.

Now let us formalize this analysis of variability to ana-
lyze our diet experiment. The standard deviation or its

square, the variance, is a good measure of variability. We
will use the variance to construct a procedure to test the
hypothesis that diet does not affect cardiac output.
Chapter 2 showed that two population parameters—
the mean and standard deviation (or, equivalently, the
variance) — completely describe a normally distributed
population. Therefore, we will use our raw data to com-
pute these parameters and then base our analysis on
their values rather than on the raw data directly. Since
the procedures, we will now develop are based on these
parameters they are called parametric statistical meth-
ods. Because these methods assume that the population
from which the samples were drawn can be completely
described by these parameters, they are valid only when
the real population approximately follows the normal
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FIGURE 3-4. When the mean of even one of the samples (sample 2) differs substantially from
the other samples, the variability computed from within the means is substantially larger than
one would expect from examining the variability within the groups.

distribution. Other procedures, called nonparametric
statistical methods, are based on frequencies, ranks, or
percentiles do not require this assumption.* Parametric
methods generally provide more information about the
treatment being studied and are more likely to detect a
real treatment effect when the underlying population is
normally distributed.

We will estimate the parameter population variance in
two different ways: (1) The standard deviation or vari-
ance computed from each sample is an estimate of the
standard deviation or variance of the entire population.
Since each of these estimates of the population variance

*In fact, these methods make no assumption about the specific shape of
the distribution of the underlying population; they are also called
distribution-free methods. We will study these procedures in Chapters 5,
8,10,and 11.

is computed from within each sample group, the esti-
mates will not be affected by any differences in the mean
values of different groups. (2) We will use the values of
the means of each sample to determine a second estimate
of the population variance. In this case, the differences
between the means will obviously affect the resulting esti-
mate of the population variance. If all the samples were,
in fact, drawn from the same population (i.e., the diet had
no effect), these two different ways to estimate the popu-
lation variance should yield approximately the same
number. When they do, we will conclude that the samples
were likely to have been drawn from a single population;
otherwise, we will reject this hypothesis and conclude
that at least one of the samples was drawn from a differ-
ent population. In our experiment, rejecting the original
hypothesis would lead to the conclusion that diet does
alter cardiac output.
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B TWO DIFFERENT ESTIMATES OF
THE POPULATION VARIANCE

How shall we estimate the population variance from the
four sample variances? When the hypothesis that the diet
does not affect cardiac output is true, the variances of each
sample of seven people, regardless of what they ate, are
equally good estimates of the population variance, so we
simply average our four estimates of variance within the
treatment groups:

Average variance in cardiac output within treat-
ment groups = 1/4 (variance in cardiac output of
controls + variance in cardiac output of spaghetti
eaters + variance in cardiac output of steak eaters +
variance in cardiac output of fruit and nut eaters)

The mathematical equivalent is
§ e 2.
= (sc0n+sspa+sst+sf)

where s? represents variance. The variance of each sample
is computed with respect to the mean of that sample.
Therefore, the population variance estimated from within
the groups, the within-groups variance s2,,, will be the same
whether or not diet altered cardiac output.

Next, we estimate the population variance from the
means of the samples. Since we have hypothesized that all
four samples were drawn from a single population, the
standard deviation of the four sample means will approx-
imate the standard error of the mean. Recall that the stan-
dard error of the mean O% is related to the sample size n

Sample 1 @ o e o o
0]
Sample 2 @ @ @ @ @
®
Sample 3 _© ® 9 = = =
Sample 4 @ @ @ @
e
Means
of °
samples

FIGURE 3-5. Four samples of seven members each drawn from the population shown in
Figure 3-1. Note that the variability in sample means is consistent with the variability within
each of the samples, F = 0.5.
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FIGURE 3-6. (A) Values of F computed from 200 experiments involving four samples, each of
size 7, drawn from the population in Figure 3-1. (B) We expect F to exceed 3.0 only 5% of the
time when all samples were, in fact, drawn from a single population. (continued)

(in this case 7) and the population standard deviation &
according to

oy=—F

X~ n
Therefore, the true population variance ¢? is related to
the sample size and standard error of the mean according to
22
0" =noy
We use this relationship to estimate the population vari-
ance from the variability between the sample means using
2 2
Sper = N5%

where siet is the estimate of the population variance com-
puted from between the sample means and sy is the stan-
dard deviation of the means of the four sample groups,
the standard error of the mean. This estimate of the

population variance, computed from between the group
means is often called the between-groups variance.

If the null hypothesis that all four samples were drawn
from the same population is true (i.e., that diet does not
affect cardiac output), the within-groups variance and
between-groups variance are both estimates of the same
population variance and so should be about equal. There-
fore, we will compute the following ratio, called the F-test
statistic:

Population variance estimated
from sample means

Population variance estimated as
average of sample variances

52

_ “bet

F= 2
S,

wit
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FIGURE 3-6. (Continued) (C) Results of computing the F ratio for all possible samples drawn
from the original population. The 5% of most extreme F values are shown darker than the rest.
(D) The F distribution one would obtain when sampling an infinite population. In this case, the
cutoff value for considering F to be “big” is that value of F that subtends the upper 5% of the

total area under the curve.

Since both the numerator and the denominator are esti-
mates of the same population variance 6, F should be about
0?%/0* = 1. For the four random samples in Figure 3-2, Fis
about equal to 1, we conclude that the data in Figure 3-2 are
not inconsistent with the hypothesis that diet does not affect
cardiac output and we continue to accept that hypothesis.

Now we have a rule for deciding when to reject the null
hypothesis that all the samples were drawn from the same
population:

If F is a big number, the variability between the sam-
ple means is larger than expected from the variability
within the samples, so reject the null hypothesis that
all the samples were drawn from the same population.

This quantitative statement formalizes the qualitative
logic we used when discussing Figures 3-2 to 3-4. The F
associated with Figure 3-3 is 68.0, and that associated with
Figure 3-4 is 24.5.



34 Chapter 3

B WHAT IS A “BIG” F?

The exact value of F one computes depends on which
individuals were drawn for the random samples. For
example, Figure 3-5 shows yet another set of four samples
of seven people drawn from the population of 200 people
in Figure 3-1. In this example F = 0.5. Suppose we repeated
our experiment 200 times on the same population. Each
time we would draw four different samples of people
and—even if the diet had no effect on cardiac out-
put—get slightly different values for F due to random
variation. Figure 3-6A shows the result of this procedure,
with the resulting Fs rounded to one decimal place and
represented with a circle; the two dark circles represent the
values of F computed from the data in Figures 3-2 and 3-5.
The exact shape of the distribution of values of F depend
on how many samples were drawn, the size of each sam-
ple, and the distribution of the population from which the
samples were drawn.

As expected, most of the computed Fsare around 1 (i.e.,
between 0 and 2), but a few are much larger. Thus, even
though most experiments will produce relatively small
values of F, it is possible that, by sheer bad luck, one could
select random samples that are not good representatives
of the whole population. The result is an occasional rela-
tively large value for F even though the treatment had no
effect. Figure 3-6B shows, however, that such values are
unlikely. Only 5% of the 200 experiments (i.e., 10 experi-
ments) produced F values equal to or greater than 3.0. We
now have a tentative estimate of what to call a “big” value
for F. Since F exceeded 3.0 only 10 out of 200 times when
all the samples were drawn from the same population, we
might decide that F is big when it exceeds 3.0 and reject
the null hypothesis that all the samples were drawn from
the same population (i.e., that the treatment had no
effect). In deciding to reject the hypothesis of no effect
when F is big, we accept the risk of erroneously rejecting
this hypothesis 5% of the time because F will be 3.0 or
greater about 5% of the time, even when the treatment
does not alter mean response.

When we obtain such a “big” F, we reject the original
null hypothesis that all the means are the same and report
P <.05. P <.05 means that there is less than a 5% chance
of getting a value of F as big or bigger than the computed
value if the original hypothesis were true (i.e., diet did not
affect cardiac output).

The critical value of F should be selected not on the
basis of just 200 experiments but all 10*? possible experi-

ments. Suppose we did all 10*? experiments and computed
the corresponding F values, then plotted the results such
as we did for Figure 3-6B. Figure 3-6C shows the results
with grains of sand to represent each observed Fvalue. The
darker sand indicates the biggest 5% of the F values. Notice
how similar it is to Figure 3-6B. This similarity should not
surprise you, since the results in Figure 3-6B are just a ran-
dom sample of the population in Figure 3-6C. Finally,
recall that everything so far has been based on an original
population containing only 200 members. In reality, pop-
ulations are usually much larger, so that there can be many
more than 10*? possible values of F. Often, there are essen-
tially an infinite number of possible experiments. In terms
of Figure 3-6C, it is as if all the grains of sand melted
together to yield the continuous line in Figure 3-6D.

Therefore, areas under the curve are analogous to the
fractions of total number of circles or grains of sand in
Figures 3-6B and 3-6C. Since the shaded region in Figure
3-6D represents 5% of the total area under the curve, it
can be used to compute that the cutoff point for a “big” F
with the number of samples and sample size in this study
is 3.01. This and other cutoff values that correspond to
P <.05and P< .01 are listed in Table 3-1.

To construct these tables, mathematicians have
assumed four things about the underlying population that
must be at least approximately satisfied for the tables to be
applicable to real data:

* Each sample must be independent of the other samples.

* Each sample must be randomly selected from the popula-
tion being studied.

* The populations from which the samples were drawn must
be normally distributed.*

* The variances of each population must be equal, even
when the means are different, i.e., when the treatment has
an effect.t

When the data suggest that these assumptions do not
apply, one ought not to use the procedure we just devel-
oped, the analysis of variance. Since there is one factor
(the diet) that distinguishes the different experimental

*This is another reason parametric statistical methods require data from
normally distributed populations.

"You can formally compare two variances with an F test; the numerator
and denominator degrees of freedom are one less than the number of
observations in the variance in the numerator and denominator that are
being compared.



B TABLE 3-1. Critical Values of F Corresponding to P < .05 (Lightface) and P < .01 (Boldface)

Vo
Va 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 oo
1 161 200 216 225 230 234 237 239 241 242 243 244 245 246 248 249 250 251 252 253 253 254 254 254
4052 4999 5403 5625 5764 5859 5928 5981 6022 6056 6082 6106 6142 6169 6208 6234 6261 6286 6302 6323 6334 6352 6361 6366
2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 19.40 19.41 19.42 19.43 19.44 19.45 19.46 19.47 19.47 19.48 19.49 19.49 19.50 19.50
98.49 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.41 99.42 99.43 99.44 99.45 99.46 99.47 99.48 99.48 99.49 99.49 99.49 99.50 99.50
S 10.13 955 9.28 9.12 9.01 894 888 884 881 878 876 874 871 869 866 864 862 860 858 857 856 854 854 8.53
34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 27.13 27.05 26.92 26.83 26.69 26.60 26.50 26.41 26.35 26.27 26.23 26.18 26.14 26.12
4 7.71 694 659 6.39 6.26 6.16 6.09 6.04 6.00 596 593 591 587 584 580 577 574 571 570 568 566 565 564 5.63
21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.54 14.45 14.37 14.24 14.15 14.02 13.93 13.83 13.74 13.69 13.61 13.57 13.52 13.48 13.46
5 6.61 5.79 5.41 519 505 4.95 4.88 482 478 474 470 468 4.64 460 456 453 450 4.46 444 4.42 440 438 437 4.36
16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.29 10.15 10.05 9.96 9.89 9.77 9.68 955 947 938 9.29 9.24 917 943 9.07 9.04 9.02
6 599 514 476 453 439 428 421 415 410 406 403 400 39 392 387 384 381 377 375 372 371 369 3.68 3.67
13.74 1092 9.78 915 8.75 847 8.26 810 798 787 7.79 7.72 7.60 752 739 731 723 714 7.09 7.02 6.99 6.94 6.90 6.88
7 559 474 435 412 397 387 379 373 368 363 360 357 352 349 344 341 338 334 332 329 328 325 324 3.23
1225 955 845 7.85 7.46 7.19 7.00 6.84 6.71 6.62 654 6.47 6.35 627 615 6.07 598 590 585 578 575 570 567 5.65
8 532 4.46 407 384 369 358 350 344 339 334 331 328 323 320 315 312 308 3.05 303 300 298 296 294 293
1126 865 759 7.01 6.63 637 619 6.03 591 582 574 567 556 548 536 528 520 511 5.06 5.00 496 491 4.88 4.86
9 512 426 386 363 348 337 329 323 318 313 310 3.07 3.02 298 293 290 286 282 280 277 276 273 272 2.71
10.56 8.02 6.99 642 6.06 580 562 547 535 526 518 511 500 492 480 4.73 464 456 451 445 441 436 433 431
10 496 410 3.74 348 333 322 314 307 3.02 297 294 291 286 282 277 274 270 267 264 261 259 256 255 254
10.04 756 6.55 599 564 539 521 506 495 485 4.78 4.71 460 452 441 433 425 417 412 405 4.01 3.96 3.93 3.91
11 484 398 359 336 320 3.09 301 29 290 286 282 279 274 270 265 261 257 253 250 247 245 242 241 2.40
9.65 7.20 6.22 567 532 507 488 4.74 4.63 454 446 440 429 421 440 402 394 386 380 3.74 3.70 3.66 3.62 3.60
12 475 388 349 326 311 3.00 292 285 280 276 272 269 264 260 254 250 246 242 240 236 235 232 231 2.30
933 693 595 541 5.06 482 465 450 439 430 422 416 405 398 38 3.78 3.70 361 356 349 346 341 3.38 3.36
13 467 380 341 318 3.02 292 284 277 272 267 263 260 255 251 246 242 238 234 232 228 226 224 222 2.21
9.07 6.70 5.74 520 486 462 444 430 419 410 4.02 396 385 3.78 3.67 359 351 342 337 330 327 321 318 3.16
14 460 3.74 334 311 296 285 277 270 265 260 256 253 248 244 239 235 231 227 224 221 219 216 214 213
886 651 556 5.03 469 446 428 414 403 394 386 380 3.70 362 351 343 334 326 321 314 311 3.06 3.02 3.00
15 454 368 329 3.06 290 279 270 264 259 255 251 248 243 239 233 229 225 221 218 215 212 210 2.08 2.07
868 6.36 542 4.89 456 4.32 414 400 389 380 3.73 3.67 356 348 3.36 329 3.20 312 3.07 3.00 297 292 289 287
16 449 363 324 301 285 274 266 259 254 249 245 242 237 233 228 224 220 216 213 209 2.07 204 202 201
853 6.23 5.29 4.77 444 420 4.03 389 3.78 3.69 3.61 3.55 345 337 325 318 310 3.01 296 298 286 2.80 2.77 2.75
17 445 359 320 29 281 270 262 255 250 245 241 238 233 229 223 219 215 211 2.08 204 2.02 199 1.97 1.96
840 6.11 518 4.67 434 410 393 3.79 368 359 352 345 335 327 316 3.08 3.00 292 286 279 276 270 2.67 2.65
18 441 355 316 293 277 366 258 251 246 241 237 234 229 225 219 215 211 207 204 200 198 195 1.93 1.92
828 6.01 509 458 425 401 385 3.71 360 351 344 337 327 319 3.07 3.00 291 283 278 271 268 262 259 2.57
19 438 352 313 290 274 263 255 248 243 238 234 231 226 221 215 211 207 202 200 196 194 191 1.90 1.88
818 593 5.014 450 447 394 3.77 363 352 343 336 330 319 312 3.00 292 284 2.76 270 2.63 260 254 251 2.49
v, = degrees of freedom for numerator; v, = degrees of freedom for denominator.

(continued)



B TABLE 3-1. Critical Values of F Corresponding to P < .05 (Lightface) and P < .01 (Boldface) (Continued)

Va
Vg 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 oo
20 435 349 310 287 271 260 252 245 240 235 231 228 223 218 212 208 204 199 196 192 190 187 1.85 1.84
810 585 494 443 410 387 3.71 356 345 337 330 323 313 3.05 294 286 277 269 263 256 253 247 244 242
21 432 3.47 3.07 284 268 257 249 242 237 232 228 225 220 215 209 205 200 196 193 189 187 1.84 1.82 1.81
802 578 487 437 404 381 365 351 340 331 324 317 3.07 299 288 280 272 263 258 251 247 242 238 236
22 430 344 3.05 282 266 255 247 240 235 230 226 223 218 213 207 203 198 193 191 187 184 181 1.80 1.78
794 572 482 431 399 376 359 345 335 326 318 3.12 3.02 294 283 275 267 258 253 246 242 237 233 231
23 428 3.42 3.03 280 264 253 245 238 232 228 224 220 214 210 204 200 19 191 1.88 184 182 1.79 1.77 1.76
788 566 476 426 394 371 354 341 330 321 314 3.07 297 289 278 270 262 253 248 241 237 232 228 226
24 426 340 3.01 278 262 251 243 236 230 226 222 218 213 209 202 198 194 189 18 182 180 1.76 1.74 1.73
782 561 472 422 390 367 350 336 325 317 3.09 3.03 293 285 274 266 258 249 244 236 233 227 223 231
25! 424 338 299 276 260 249 241 234 228 224 220 216 211 206 200 196 192 187 1.84 180 1.77 174 1.72 1.71
7.77 557 4.68 418 386 3.63 346 3.32 321 313 3.05 299 289 281 270 262 254 245 240 232 229 223 219 217
26 422 337 298 274 259 247 239 232 227 222 218 215 210 205 199 195 190 185 182 178 176 1.72 1.70 1.69
772 553 464 414 382 359 342 329 317 3.09 3.02 296 286 277 266 258 250 241 236 228 225 219 215 213
27 421 335 296 273 257 246 237 230 225 220 216 213 208 203 197 193 188 184 180 176 1.74 171 168 1.67
768 549 460 411 3.79 356 339 3.26 314 3.06 298 293 283 274 263 255 247 238 233 225 221 216 212 210
28 420 334 295 271 256 244 236 229 224 219 215 212 206 202 19 191 187 181 1.78 175 172 1.69 1.67 1.65
764 545 457 4.07 3.76 353 336 323 311 3.03 295 290 280 271 260 252 244 235 230 222 218 213 2.09 2.06
29 4418 333 293 270 254 243 235 228 222 218 214 210 205 200 194 190 18 180 1.77 173 171 168 1.65 1.64
760 542 454 4,04 373 350 333 320 3.08 300 292 287 277 268 257 249 241 232 227 219 215 210 2.06 2.03
30 417 332 292 269 253 242 234 227 221 216 212 209 204 199 193 189 184 179 176 172 169 166 1.64 1.62
756 539 451 4.02 3.70 347 330 3.17 3.06 298 290 284 274 266 255 247 238 229 224 216 213 2,07 203 201
2 4415 330 290 267 251 240 232 225 219 214 210 207 202 197 191 186 182 176 174 169 167 164 1.61 1.59
750 534 446 397 366 342 325 312 3.01 294 286 280 270 262 251 242 234 225 220 212 208 202 198 196
34 413 328 288 265 249 238 230 223 217 212 208 205 200 195 189 184 180 174 171 167 164 161 1.59 1.57
744 529 442 393 361 338 321 3.08 297 289 282 276 266 258 247 238 230 221 215 208 204 198 194 191
36 411 326 286 263 248 236 228 221 215 210 206 203 198 193 187 1.8 178 172 169 165 162 159 156 1.55
739 525 438 389 358 335 318 3.04 294 286 278 272 262 254 243 235 226 217 212 204 200 194 190 187




38 410 325 285 262 246 235 226 219 214
735 521 434 386 354 332 315 3.02 291

40 408 323 284 261 245 234 225 218 212
731 518 431 3.83 351 329 312 299 288

42 4.07 322 2.83 259 244 232 224 217 211
727 515 429 380 349 326 310 296 286

44 406 321 282 258 243 231 223 216 2.10
724 512 426 3.78 346 324 3.07 294 284

46 405 320 281 257 242 230 222 214 209
721 510 424 3.76 344 322 3.05 292 282

48 4.04 319 280 256 241 230 221 214 2.08
719 5.08 422 3.74 342 320 3.04 290 280

50 403 318 279 256 240 229 220 213 2.07
717 5.06 420 3.72 341 318 3.02 288 278

60 400 31415 276 252 237 225 217 210 2.04
7.08 498 413 3.65 3.34 312 295 282 272

70 3.98 313 274 250 235 223 214 207 201
7.01 492 4.08 3.60 329 3.07 291 277 267

80 3.96 311 272 248 233 221 212 205 1.99
6.96 4.88 4.04 356 325 3.04 287 274 264

100 3.94 3.09 270 246 230 219 210 203 1.97
690 482 398 351 320 299 282 269 259

120 3.92 3.07 268 245 229 218 209 202 1.96
685 479 395 348 317 296 279 266 2.56

o0 3.84 299 260 237 221 209 201 194 1.88

6.63 4.60 3.78 332 3.02 280 264 251 241

2.09
2.82
2.07
2.80
2.06
2.77
2.05
2.75
2.04
2.73
2.03
2.71
2.02
2.70
iLEE)
2.63
1.97
2.59
1.95
2.55
1.92
2.51
1.91
2.47
1.83
2.32

2.05
2.75
2.04
2.73
2.02
2.70
2.01
2.68
2.00
2.66
1.99
2.64
1.98
2.62
iLEk)
2.56
1.93
2.51
AL Sl
2.48
1.88
2.43
1.87
2.40
E7S)
2.24

2.02
2.69
2.00
2.66
iLER)
2.64
1.98
2.62
iL.&
2.60
1.96
2.58
%95
2.56
1.92
2.50
1.89
2.45
1.88
2.41
1.85
2.36
1.84
2.34
AL7/3)
2.18

1.96
2.59
1.95
2.56
1.94
2.54
1.92
2.52
1.91
2.50
1.90
2.48
1.90
2.46
1.86
2.40
1.84
2.35
1.82
2.32
iL.77€)
2.26
1.78
2.23
1.69
2.07

1.92
2.51
1.90
2.49
1.89
2.46
1.88
2.44
1.87
2.42
1.86
2.40
1.85
2.39
1.81
2.32
1.79
2.28
1.77
2.24
1.7
2.19
1.73
2.15
1.64
1.99

1.85
2.40
1.84
2.37
1.82
2.35
1.81
2.32
1.80
2.30
1.79
2.28
1.78
2.26
iL.7%)
2.20
1.72
2.15
1.70
211
1.68
2.06
1.66
2.03
L7
1.87

1.80
2.32
iL.7e)
2.29
1.78
2.26
1.76
2.24
il.7/5)
2.22
1.74
2.20
1.74
2.18
1.70
212
1.67
2.07
1.65
2.03
1.63
1.98
1.61
1.95
1.52
1.79

1.76
2.22
1.74
2.20
iL.78)
217
1.72
2.15
1.71
2.13
1.70
211
1.69
2.10
1.65
2.03
1.62
1.98
1.60
1.94
L5
1.89
1.56
1.86
1.46
1.69

1.71
2.14
1.69
211
1.68
2.08
1.66
2.06
1.65
2.04
1.64
2.02
1.63
2.00
iL5E)
1.93
1.56
1.88
1.54
1.84
ALGHL
1.79
1.50
1.76
1.40
1.59

1.67
2.08
1.66
2.05
1.64
2.02
1.63
2.00
1.62
1.98
1.61
1.96
1.60
1.94
1.56
1.87
1.53
1.82
1.51
1.78
1.48
1.73
1.46
1.70
1.35
1.52

1.63
2.00
1.61
1.97
1.60
1.94
1.58
1.92
il 577
1.90
1.56
1.88
1.55
1.86
1.50
1.79
1.47
1.74
1.45
1.70
1.42
1.64
1.39
1.61
1.28
141

1.60
1.97
1.59
1.94
L5
1.91
1.56
1.88
1.54
1.86
L5
1.84
1.52
1.82
1.48
1.74
1.45
1.69
1.42
1.65
iLER)
1.59
1.37
1.56
1.24
1.36

1.57
1.90
1.55
1.88
1.54
1.85
1.52
1.82
il 57l
1.80
1.50
1.78
1.48
1.76
1.44
1.68
1.40
1.62
1.38
1.57
1.34
1.51
1.32
1.48
1.17
1.25

1.54
1.86
1.53
1.84
iL5HL
1.80
1.50
1.78
1.48
1.76
1.47
1.73
1.46
1.71
1.41
1.63
1.37
1.56
1.35
1.52
1.30
1.46
1.28
1.42
1.11
1.15

1.53
1.84
1.51
1.81
1.49
1.78
1.48
1.75
1.46
1.72
1.45
1.70
1.44
1.68
iL.8E)
1.60
1.35
1.53
1.32
1.49
1.28
1.43
1.25
1.38
1.00
1.00

v, = degrees of freedom for numerator; v, = degrees of freedom for denominator.

Reproduced from Snedecor GW, Cochran WG. Statistical Methods, 8th ed. Copyright © 1989. Reproduced with the permission of John Wiley & Sons, Inc.
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groups, this is known as a single factor or one way analysis
of variance. Other forms of analysis of variance (not dis-
cussed here) can be used to analyze experiments in which
there is more than one experimental factor.

Since the distribution of possible F values depends on
the size of each sample and number of samples under con-
sideration, so does the exact value of F which corresponds
to the 5% cutoff point. For example, in our diet study, the
number of samples was 4 and the size of each sample was
7. This dependence enters into the mathematical formulas
used to determine the value at which F gets “big” as two
parameters known as degree-of-freedom parameters, often
denoted as v (Greek “nu”). For this analysis, the between-
groups degrees of freedom (also called the numerator
degrees of freedom because the between-groups variance
is in the numerator of F) is defined to be the number of
samples m minus 1, or v,, = m — 1. The within-groups (or
denominator) degrees of freedom is defined to be the
number of samples times 1 less than the size of each sam-
ple, v; = m(n — 1). For our diet example, the numerator
degrees of freedom are 4 — 1 = 3, and the denominator
degrees of freedom are 4(7 — 1) = 24. Degrees of freedom
often confuse and mystify people who are trying to work
with statistics. They simply represent the way number of
samples and sample size enter the mathematical formulas
used to construct all statistical tables.

B CELL PHONES AND SPERM

We now have the tools needed to form conclusions using
statistical reasoning. We will examine examples, all based
on results published in the medical literature. I have exer-
cised some literary license with these examples for two rea-
sons: (1) Medical and scientific authors usually summarize
their raw data with descriptive statistics (like those devel-
oped in Chapter 2) rather than including the raw data. As a
result, the “data from the literature” shown in this chapter—
and the rest of the book—are usually my guess at what the
raw data probably looked like based on the descriptive sta-
tistics in the original article.* (2) The analysis of variance as
we developed it requires that each sample contain the same
number of members. This is often not the case in reality, so
I adjusted the sample sizes in the original studies to meet
this restriction. We later generalize our statistical methods

*Since authors often failed to include a complete set of descriptive statis-
tics, I had to simulate them from the results of their hypothesis tests.

to handle experiments with different numbers of individu-
als in each sample or treatment group.

An Early Study

Cell phones have become ubiquitous all over the world,
exposing people to radiofrequency radiation. The phones
are almost always held close to the body, exposing poten-
tially sensitive tissues to relatively high levels of this radia-
tion. Based on an earlier small study suggesting declining
levels of rapidly moving spermatozoa in a small number of
cell phone users, Imre Fejes and colleagues® obtained semen
samples from two groups of young men 30.8 * 4.4 (stan-
dard deviation, range 17 to 41) years old who were patients
at an infertility clinic: A low use group who used cell phones
less than 15 minutes/day and a high use group who used
their phones for over 60 minutes/day. (They collected their
data between November 2002 and March 2004, when cell
phone use was probably lower than in subsequent years.)

Because this is an observational study, Fejes and col-
leagues tried to minimize the effects of confounding vari-
ables by excluded men with conditions that could affect
sperm function, including smoking (but only more than
10 cigarettes/day), regular alcohol consumption, drug
abuse, illness, reproductive or testicular abnormalities,
abnormal hormone levels, or genital tract infection.

Figure 3-7 shows the percentage of rapidly moving
sperm for each individual. Figure 3-7 shows that for the 61
men in the low use group the mean percentage of rapidly
mobile sperm was 49% and for the 61 men in the high use
group it was 41%. The standard deviations were 21% and
22%, respectively.

How consistent are these data with the null hypothesis
that rapid sperm mobility does not differ in men who use
their cell phones less than 15 minutes/day compared to
men who use them more than 60 minutes/day? In other
words, how likely are the differences in the two samples of
men depicted in Figure 3-7 to be due to random sampling
rather than the difference in cell phone usage?

To answer this question, we perform an analysis of
variance.

We begin by estimating the within-groups variance by
averaging the variances of the two samples of men. Since
this estimate of the underlying population variance is

Fejes 1, Zévacki Z, Szollosi J, Koloszér S, Daru J. Kovécs L, Pal A. Is there
a relationship between cell phone use and semen quality? Arch Androl.
2005;51:385-393.
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PERCENT OF RAPIDLY MOTILE SPERM

FIGURE 3-7. Results of a study comparing fraction of sperm with rapid motility
associated with low and high intensity cell phone use. The fraction of rapid motility for
each man’s sperm is indicated by a circle at the appropriate fraction of rapidly motile
sperm. (Such a plot is called a histogram of the data. The mean fraction of rapidly
motile sperm in men with lower cell phone use (49%) is higher than for the men with
high cell phone use (41%). The statistical question is whether this difference is due to
random sampling or due to an actual effect of cell phone use. The horizontal lines show
one standard deviation on either side of the means (21% and 22%, respectively).

computed from the variances of the separate samples, does
not depend on whether the means are different or not:

> 1,2 2
Swit = 5 (Siow + Shigh)

1
= 5(212 +22%)=462.5%"

We then go on to compute the between-groups variance
assuming that the null hypothesis is correct and the differ-
ences between the observed means is due to random sam-
pling variation, not any systematic effects of the level of cell
phone usage. The first step is to estimate the standard error
of the mean by computing the standard deviation of the
two sample means. The mean of the two sample means is

— 1 = —
X:E(Xlow+Xhigh)

= 1
X25(49+41)=45%

Therefore, the standard deviation of the sample means is

X

_ \/ Kiow = X)* +(Xnigh — X’
m—1

=5.66%

53

_\/(49—45)2+(41—45)2
B 2-1

Since the sample size nis 61, the estimation of the pop-
ulation variance from between the groups is

Spe =115 =61(5.667) =1952%"
Finally, the ratio of these two different estimates of the

underlying population variance (assuming that the null
hypothesis is correct) is

=5§et _19%2 _, o,
Sfm 462.5

The degrees of freedom for the numerator are the
number of sample groups minus 1,s0 v,=2—1=1,and
the degrees of freedom for the denominator are the num-
ber of groups times one less than the sample size of each
group, so V;=2(61— 1) = 120. Look in the column headed
1 and the row headed 120 in Table 3-1. The resulting entry
indicates that there is less than a 5% chance of F exceeding
3.92 by chance if, in fact, the null hypothesis that cell
phone use did not affect mean sperm mobility was true.
We therefore concluded that the value of Fassociated with
our observations is “big” and reject the null hypothesis
that there is no difference in sperm mobility in the two
groups of men (P < .05) shown in Figure 3-7.

By rejecting the null hypothesis of no difference, we con-
clude that there are different levels of rapid sperm motility
associated with higher levels of cell phone use, with the
heavier users having fewer sperm with rapid motility.
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B TABLE 3-2. Sperm Motility (%)

Observed Cell Phone Use Number of Subjects (n) Mean Standard Deviation
Control (no cell phone use) 40 68 6
Low use (<2 h/d) 40 65 8
Medium use (2 to 4 h/d) 40 54 11
High use (>4 h/d) 40 45 16

A Better Control Group

One problem with Fejes and colleagues’ study is that it
did not include a completely unexposed (clean) control
group of men who did not use cell phones at all. Ashok
Agarwal and colleagues* avoided this problem when they
did a similar observational study of men aged 32 + 6
(standard deviation) years old who were attending their
infertility clinic. They also had stricter exclusion criteria
than the earlier study. They excluded anyone with a his-
tory of smoking or other tobacco use, alcohol use, dia-
betes, high blood pressure, or other diseases. Unlike the
study just discussed, they measured the fraction of
sperm that exhibited any motility (as opposed to rapid
motility). Table 3-2 shows the data. As before, the ques-
tion is whether cell phone use is associated with changes
in sperm motility.

To answer this question, we perform an analysis of
variance to test the null hypothesis that the level of cell
phone use is not associated with differences in sperm
motility among the four groups.

As before, we begin by estimating the within-groups
variance by averaging the variances of the four samples
of men:

2

» 1,5 2
Swi __(S medium+shigh)

wit 4 control

+s0 +s
1
Sei =Z(62+82+112+162)=119.3%2

To compute the between-groups variance estimate on
the assumption that the null hypothesis is true, so that all
the observed means are simply estimating the same

*Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone
usage on semen analysis in men attending infertility clinic: an observa-
tional study. Fertil Steril. 2008;89:124-128.

underlying (constant) population mean in sperm motility.
The mean of the four sample means is

— 1 = _ o _
X= Z (Xcontrol + Xiow + X medium + Xhigh)
= 1

X:Z(68+65+54+45)=58%

The standard deviation of the m = 4 sample means is

(§c0ntrol - X)Z + (ilow - )_()2
S} = + (Xmedium _})2 + (Xhigh - X)Z
m—1

(68—58)" +(65—58)°
5% =, |+ (55—58)" +(45—58)"

4-1

=10.44%

Since the sample size 7 is 40, the estimation of the pop-
ulation variance from between the groups is

Ster = 1157 =40(10.44%) = 4360%

To test whether these two estimates of the underlying
population variance are consistent with each other under
the assumption that the null hypothesis is correct (i.e.,
that sperm motility is not detectably different between the
different cell phone sample groups), we compute

P Soer _ 4360
s2. 119.3

wit

=36.53

The numerator degrees of freedom are v,=m—-1=4-1
= 3 and denominator degrees of freedom are v;= m(n— 1)
=4(40—1) = 156. Table 3-1 does not have an entry for v,;=
156, but the critical value for P < .01 will be between 3.95,
the value corresponding to 120 denominator degrees of
freedom and 3.78, the value for an infinite number of
degrees of freedom. The value of Fassociated with the data
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exceeds this range, so, as before, we reject the null hypoth-
esis that sperm motility is not related to cell phone use.

An important question, however, remains: Which of the
four sample groups differed from the others? Is any cell
phone use associated with a reduction in sperm motility
or is there evidence of the threshold for an effect? Does the
effect increase with how much a man used the cell phone?
We will have to defer answering these questions until we
develop additional statistical tools, the ¢ test and the associ-
ated multiple comparison procedures, in Chapter 4.

An Experimental Study

As discussed in Chapter 2, the strength of the conclusions
about cause and effect are always limited in observational
studies because one can never totally exclude the possibility
that there is some unobserved confounding variable that is
influencing the results which makes it appear that there is a
relationship between the conditions being studied and the
outcome variable when no such relationship exists. One can
draw much stronger conclusions in an experiment in which
the investigator randomly assigns experimental subjects to
the different treatment conditions, which he or she controls.
In such a case, the only systematic difference between the
different experimental groups is the presence or absence of
the condition being studied.

Motivated in part by the two observational studies just
discussed, Nader Salama and colleagues* conducted an
experiment in which they exposed adult male rabbits to cell
phone radiation for 8 hours a day for 12 weeks. The rabbits
were exposed to the cell phones by being housed during the
8 hour exposure time in a specially designed cage which kept
the rabbits’ testes positioned over the cell phone during the
whole time. (They were housed in larger cages the rest of the
time.) Because being in such a constrained environment
might prove stressful to the rabbit, which could, in turn,
affect sperm production and function—a confounding
variable— Salama and coworkers had two control groups: a
stress control, where the rabbit was housed in the same spe-
cially designed cage as the cell phone-exposed rabbits, but
without the cell phone, and an ordinary control in which the
rabbit was house in their usual cage all the time. They studied
24 rabbits, randomizing 8 to each experimental condition.

The data and associated analysis of variance are pre-
sented in Box 3-1. Notice that while the average values are

*Salama N, Kishimoto T, Kanayama H. Effects of exposure to a mobile
phone on testicular function and structure in adult rabbit. Int ] Androl.
2010;33:88-94.

roughly comparable to the values observed in the two
human studies (compare the data in Box 3-1 with that in
Fig. 3-7 and Table 3-2), the standard deviations are smaller
in the experimental study using rabbits. This difference is
probably because all the rabbits were the same strain (New
Zealand White rabbits) and same age, whereas the human
observational studies involved men with a range of ages
and other differences. Indeed, one benefit of doing such
an experimental study is to obtain this standardization
and the associated reduction in between-individual ran-
dom differences. At the same time, the fact that the obser-
vational studies used real people makes the results more
relevant in the real world. This tradeoff between a tightly
controlled subject population and generality in the real
world is a common tension in most biomedical and clini-
cal research.

There is a statistically significant difference between the
treatment groups (P < .01). (Resolving whether all three
groups are different from each other or whether there is
some subgrouping of responses will have to wait until we
develop procedures for multiple comparison testing in
Chapter 4.) Because the rabbits were the same, randomly
assigned to treatment groups, and except for the presence
of the cell phone and cage situation, treated identically, we
can confidently conclude that the experimental condition
affected the sperm motility.

While one always has to be cognizant of cross-species
comparisons, the fact that two independent observational
studies of men done under different conditions and an
experimental study—albeit using rabbits rather than
people—substantially strengthens a conclusion that the
cell phone exposure is causing the reduction in sperm
function. Combining different sources of information
with different strengths and weaknesses to identify points
of concordance and disagreement is the key to drawing
conclusions about causality, particularly when a substan-
tial part of the evidence comes from observational studies.

B UNEQUAL SAMPLE SIZE

We have developed analysis of variance for the case of
equal sample sizes because doing so allowed us to develop
and present the formulas to compute F in a way that
makes it easy to understand the underlying concepts. It is
also possible to do an analysis of variance when the sam-
ple sizes are not the same, although the formulas and
notation are much more opaque in terms of what they
mean. Appendix A gives these computational formulas
and Box 3-2 illustrates how to use them.
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BOX 3-1 - Effect of Cell Phone Radiation on Rabbit Sperm Motility

Rabbit Sperm Motility after 12 Weeks (%)

Experimental Condition Sample Size (n) Mean Standard Deviation
Ordinary control 8 72 3.2
Stress control 8 61 2.2
Cell phone exposure 8 50 2.5

The within-groups variance is computed by averaging the three sample variances:

2 1 2
S + sstress

2
wit 5 (Sordinary +$

phone )

s2 = %(3.22 +2.22 +2.5%) = 7.11%>

wit

The between-groups variance estimate begins with computing the mean in sperm motility in the
three samples,

_ 1 _ _
X= E(Xordinary + Xstress + Xphone)
- 1
X = 5(72+61+50) =61%

which is then used to compute the standard deviation of the m = 3 sample means:

S = (}ordinary - Y)Q ar ()_(stress - Y)Q ar (thone - Y)z
& m-1

=11.0%

X

_ \/(72 —61)% + (61— 61)* + (50 — 61)°
3-1

Since the sample size of each group, #, is 8, the between-groups variance estimate is
o, = nsy = 8(11.0%) = 968%”

So

2
FoSe o998 43545
2 741

wit

We compare this to the critical value of F for v,(=m -1 =3 -1 = 2 numerator and vy=m(n—-1)=3(8-1) =
21 denominator degrees of freedom. From Table 3-1, the critical value for P < .01 is 5.78; the value associated
with our data exceeds this value, so we conclude that there is a statistically significant difference between the
three treatment groups.




BOX 3-2 - Effect of Seeing Smoking in Movies on Smokers’ Brains

Seeing onscreen smoking in movies is a major stimulus for youth and young adults to start smoking. It also stimu-
lates smoking behavior among people who are already smokers. Smoking is a highly practiced motor skill that often
occurs automatically without conscious awareness. There are certain areas of the brain (called the frontopatietal
network) that is activated when people observe, plan, or imitate actions. To investigate whether this action observa-
tion would be preferentially activated in smokers when watching smoking in a movie, Dylan Wagner and colleagues*
did functional MRI (magnetic resonance imaging) on the brains of 17 smokers and 15 nonsmokers and measured
the extent to which blood flow increased in brain regions in the frontoparietal network. (The units are arbitrary.)
Here are the data:

Sample Size (n) Mean Standard Deviation
Smokers 17 .65 .20
Nonsmokers 15 .22 .15

To test the null hypothesis that the levels of blood flow are no different among smokers and nonsmokers, we
compute an analysis of variance using the formulae in Appendix A.
We first compute the total sample size by adding up the sample sizes:

N= Z”t = nsmokers + nnonsmokers =17+15=32
Next, we estimate the within-groups variance estimate based on a weighted average of the variances within the
two sample groups:

SS,. = 2. (n, —1)s = (17 - 1) x.20% + (15 — 1) x .15° = .955

The degrees of freedom associated with the within-groups variance estimate is
Vit =DF =N—k=32-2=30

So
, SS, .955

$2, = = ——-.0318
DF,, 30

The formula for the between-groups variance estimate is

- X
SSy. = ZHtXtQ _ m
N
_ (17x.65+15x.22)°
32

The degrees of freedom associated with the between-groups variance estimate is

SS, . = (17 x.65% + 15 x .22%) =1.473

bet

Vou =DF =k-1=2-1=1

So
2 SS,.. _ 1.473 —1.473
et DFbet 1
As in the equal sample size case,
2
FoSa 1473 4455
s> .0318

wit

From Table 3-1, this value of F exceeds the critical value of 7.56 that defines the largest 1% of values under the
null hypothesis with 1 numerator and 30 denominator degrees of freedom, so we reject the null hypothesis of no
difference, and conclude that seeing images of smoking in movies stimulates the brain regions associated with
repetitive actions in smokers more than nonsmokers (P < .01).

*Wagner DD, Dal Cin S, Sargent JD, Kelley WM, Heatherton TE Spontaneous action representation in smokers when watching movie characters
smoke. J Neurosci. 2001;31:894-898.
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B TABLE 3-3. Experimental Design for One Way Analysis of Variance

Diet

Control Spaghetti

Steak Fruit and Nuts

data data

data data

B TWO WAY ANALYSIS OF VARIANCE

The analysis of variance we have been discussing in this
chapter is more precisely called one way or single factor
analysis of variance, because the different treatment
groups are defined by one factor (such as diet or level of
cell phone use). It turns out that this one way analysis of
variance is just the simplest case of much more general
analysis of variance, in which it is possible to consider the
effects of two (or more) factors acting simultaneously.

To illustrate the next level of complexity in experimen-
tal design, let us return to the diet example from the
beginning of this chapter. In the original example, we
evaluated the effects of a single factor, diet, on cardiac out-
put of people. Table 3-3 shows the layout for the data from
this study. A more sophisticated design would be to simul-
taneously consider the effects of diet and gender on car-
diac output, using a two way (or two factor) design in
Table 3-4. Based on these data, we could use a generaliza-
tion of the analysis of variance presented in this chapter to
test three null hypotheses using the resulting data:

1. Diet has no effect on cardiac output, controlling for
gender.

2. Gender has no effect on cardiac output, controlling
for diet.

3. The effect of diet on cardiac output is the same regard-
less of gender and vice versa.

The third null hypothesis states that there is no interac-
tion between the two main effects, diet and gender. A sig-
nificant interaction would mean that the effects of diet are
different for different genders.

While we will not go into the details of how to compute
and interpret two way (and higher order) analyses of
variance,* the overall principles are the same as those dis-
cussed in this chapter.

*See Glantz S, Slinker B. Primer of Applied Regression and Analysis of Vari-
ance. 2nd ed. New York: McGraw-Hill; 2001 for details on how to analyze
two way and higher-order analyses of variance.

We now turn our attention to developing the ¢ test and
adapting it to do multiple comparisons between pairs of
means following a significant analysis of variance.

B PROBLEMS

3-1 In order to study the cellular changes in people with
tendencies to develop diabetes, Kitt Petersen and her col-
leagues' studied the ability of muscle cells in normal chil-
dren and insulin-resistant children to convert glucose into
adenosine triphosphate (ATP), the “energy molecule”
muscle cells produce to power contraction. The body pro-
duces insulin to permit cells to process glucose, and muscle
cells of insulin-resistant people do not respond normally
to process glucose. They measured the amount of ATP
produced per gram of muscle tissue after giving the study
participants a dose of glucose. Persons in the control group
produced 7.3 pmol/g of muscle/min of ATP (standard
deviation 2.3 umol/g of muscle/min) and insulin-resistant
persons produced 5.0 pmol/g of muscle/min (standard
deviation 1.9 umol/g of muscle/min). There were 15 chil-
dren in each test group. Is there a difference in the mean
rate of ATP production in these two groups of people?

3-2 It was once generally believed that infrequent and
short-term exposure to pollutants in tobacco, such as car-
bon monoxide, nicotine, benzo[a]pyrene, and oxides of
nitrogen, will not permanently alter lung function in
healthy adult nonsmokers. To investigate this hypothesis,
James White and Herman Froeb* measured lung function
in cigarette smokers and nonsmokers during a “physical
fitness profile” at the University of California, San Diego.
They measured how rapidly a person could force air from

Petersen K, et. al. Impaired mitochondrial activity in the insulin-resis-
tant offspring of patients with type 2 diabetes. N Engl ] Med. 2004;
350:664—671.

*White J, Froeb H. Small-airways dysfunction in nonsmokers chronically
exposed to tobacco smoke. N Engl ] Med. 1980;302:720-723.
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B TABLE 3-4. Experimental Design for Two Way Analysis of Variance

Diet
Gender Control Spaghetti Steak Fruit and Nuts
Male data data data data
Female data data data data

B TABLE 3-5. Mean Forced Midexpiratory Flow (L/s)

Group Sample Size (n) Mean Standard Deviation
Nonsmokers

Worked in smoke-free environment 200 3.17 0.74

Worked in smoky environment 200 2.72 0.71
Light smokers 200 2.63 0.73
Moderate smokers 200 2.29 0.70
Heavy smokers 200 2.12 0.72

the lungs (mean forced midexpiratory flow). Reduced
forced midexpiratory flow is associated with small-air-
ways disease of the lungs. Table 3.5 shows the data for the
women that White and Froeb tested. Is there evidence that
the presence of small-airways disease, as measured by this
test, is different among the different experimental groups?

3-3 The stair climb power test is a functional test used
among older people to measure leg muscle power. To
assess whether this test could be used to assess leg muscle
power in people with chronic obstructive pulmonary dis-
ease (COPD) Marc Roig and colleagues* measured the
power delivered by people with mild-to-severe COPD with
age and sex matched controls with no disease. Subjects
were told to climb 10 stairs as quickly as they could and the
power computed as the vertical velocity (the gain in height
of the 10 stairs divided by the length of time it took the
subject to climb the stairs) times the subject’s weight. The
21 people in the control group developed a mean of 378
watts (standard deviation 121 watts) and the 21 people
with COPD developed 266 watts (standard deviation 81
watts). Test the hypothesis that there is no difference in the
amount of power these two groups of people developed.

*Roig M, et al. Associations of the Stair Climb Power Test with muscle
strength and functional performance in people with chronic obstructive
pulmonary disease: a cross-sectional study. Phys Ther. 2010;90:1774-1782.

3-4 In the study of cell phone use and sperm function, the
investigators also measured sperm viability for the differ-
ent categories of cell phone users. Is there a difference in
viability among these groups? (See Table 3-6.)

3-5 Men and women differ in risk of spinal fracture. Men
are at increased risk for all types of bone fractures until
approximately 45 years of age, an effect probably due to
the higher overall trauma rate in men during this time.
However, after age 45, women are at increased risk for
spinal fracture, most likely due to age-related increases in
osteoporosis, a disease characterized by decreased bone
density. S. Kudlacek and colleagues’ wanted to investigate
the relationship between gender and bone density in a
group of older adults who have had a vertebral bone frac-
ture. Their data are presented in Table 3-7. Are there dif-
ferences in vertebral bone density between similarly aged
men and women who have had a vertebral bone fracture?

3-6 Burnout is a term that loosely describes a condition of
fatigue, frustration, and anger manifested as a lack of

"Kudlacek S, et al. Gender differences in fracture risk and bone mineral
density. Maturitas, 2000;36:173-180.
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B TABLE 3-6. Sperm Viability (%)

Observed Cell Phone Use Sample Size (n) Mean Standard Deviation
Control (no cell phone use) 40 72 7
Low use (<2 h/d) 40 68 9
Medium use (2 to 4 h/d) 40 58 11
High use (>4 h/d) 40 47 17

enthusiasm for and feeling of entrapment in one’s job.
This situation can arise when treating people who have
serious diseases. In recent years, AIDS has joined the list
of diseases that may have a negative impact on profession-
als serving people suffering from this disease. To investi-
gate whether there were differences in burnout associated
with caring for people who have AIDS compared with
other people who have serious diseases, J. Lopez-Castillo
and coworkers* administered the Maslach Burnout Inven-
tory questionnaire to health professionals working in four
clinical units: infectious disease, hemophilia, oncology,
and internal medicine in Spain (see Table 3-8). (Ninety
percent of the people in the infectious disease and 60% of
the people in the hemophilia unit were HIV positive.) Are
there differences in burnout scores between health profes-
sionals working in these different units?

3-7 High doses of estrogen interfere with male fertility in
many animals, including mice. However, there may be sig-
nificant differences in the response to estrogen in different
mouse strains. To compare estrogen responsiveness in dif-
ferent strains of mice, Spearow and colleagues’ implanted

*Lopez-Castillo ], et al. Emotional distress and occupational burnout in
health care professionals serving HIV-infected patients: a comparison
with oncology and internal medicine services. Psychother Psychosom.
1999;68:348-356.

fSpearow JL, et al. Genetic variation in susceptibility to endocrine disrup-
tion by estrogen in mice. Science. 1999;285:1259-1261.

capsules containing 1 pg of estrogen into four different
strains of juvenile male mice. After 20 days, they measured
their testicular weight, shown in Table 3-9. Is there suffi-
cient evidence to conclude that any of these strains differ
in response to estrogen? (The formulas for analysis of
variance with unequal sample sizes are in Appendix A.)

3-8 Several studies suggest that schizophrenic patients have
lower IQ scores measured before the onset of schizophre-
nia (premorbid IQ) than would be expected based on fam-
ily and environmental variables. These deficits can be
detected during childhood and increase with age. Cathe-
rine Gilvarry and colleagues® investigated whether this was
also the case with patients diagnosed with affective psycho-
sis, which encompasses schizoaffective disorder, mania, and
major depression. In addition, they also wanted to assess
whether any IQ deficits could be detected in first-degree
relatives (parents, siblings, and children) of patients with
affective psychosis. They administered the National Adult
Reading Test (NART), which is an indicator of premorbid
IQ, to a set of patients with affective psychosis, their first-
degree relatives, and a group of normal subjects without
any psychiatric history. Gilvarry and colleagues also

*Gilvarry C, et al. Premorbid 1Q in patients with functional psychosis and
their first-degree relatives. Schizophr Res. 2000;41:417-429.

B TABLE 3-7. Vertebral Bone Density (mg/cm?)

Group Sample Size (n) Mean SEM
Women with bone fractures 50 70.3 2555
Men with bone fractures 50 76.2 3.11
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B TABLE 3-8. The Maslach Burnout Inventory Questionnaire

Infectious Disease Hemophilia Oncology Internal Medicine
Mean 46.1 35.0 44.4 47.9
Standard deviation 16.1 11.1 15.6 18.2
Sample size (n) 25 25 25 25

considered whether there was an obstetric complication
(OC) during the birth of the psychotic patient, which is
another risk factor for impaired intellectual development.
Is there any evidence that NART scores differ among these
groups of people (see Table 3-10)? (The formulas for
analysis of variance with unequal sample sizes are in
Appendix A.)

B TABLE 3-10. National Adult Reading Test Score

B TABLE 3-9. Testes Weight (mg)

Mouse Strain Sample Size (n) Mean SEM
CD-1 13 142 6
S15/1JIs 16 82 S
C17/JIs 17 60 5
B6 15 38 3

Group Sample Size (n) Mean Standard Deviation
Controls 50 112.7 7.8
Psychotic patients (no obstetric complications) 28 111.6 10.3
Relatives of psychotic patients (no obstetric complications) 25 114.3 12.1
Psychotic patients with obstetric complications 13 110.4 10.1
Relatives of psychotic patients with obstetric complications 19 116.4 8.8
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The Special Case of

CHAPTER

Two Groups: The t Test

As we have just seen in Chapter 3, many investigations
require comparing only two groups. In addition, as the
last example in Chapter 3 illustrated, when there are
more than two groups, analysis of variance only allows
you to conclude that the data are not consistent with
the hypothesis that all the samples were drawn from a
single population. It does not help you decide which
one or ones are most likely to differ from the others. To
answer these questions, we now develop a procedure
that is specifically designed to test for differences in two
groups: the t test or Student’s t test. While we will
develop the ttest from scratch, we will eventually show
that it is just a different way of doing an analysis of
variance. In particular, we will see that F = t* when
there are two groups.

The ¢ test is the most common statistical procedure in
the medical literature; you can expect it to appear in
more than half the papers you read in the general medi-
cal literature. In addition to being used to compare two
group means, it is widely applied incorrectly to compare
multiple groups, by doing all the pairwise comparisons,
for example, by comparing more than one intervention
with a control condition or the state of a patient at dif-
ferent times following an intervention. As we will see,
this incorrect use increases the chances of rejecting the
null hypothesis of no effect above the nominal level, say
5%, used to select the cutoff value for a “big” value of the
test statistic ¢. In practical terms, this boils down to
increasing the chances of reporting that some therapy

had an effect when the evidence does not support this
conclusion.

B THE GENERAL APPROACH

Suppose we wish to test a new drug that may be an effective
diuretic. We assemble a group of 10 people and divide
them at random into two groups, a control group that
receives a placebo and a treatment group that receives the
drug; then we measure their urine production for 24 hours.
Figure 4-1A shows the resulting data. The average urine
production of the group receiving the diuretic is 240 mL
higher than that of the group receiving the placebo. Simply
looking at Figure 4-1A, however, does not provide very
convincing evidence that this difference is due to anything
more than random sampling.

Nevertheless, we pursue the problem and give the pla-
cebo or drug to another 30 people to obtain the results
shown in Figure 4-1B. The mean responses of the two
groups of people as well as the standard deviations are
almost identical to those observed in the smaller samples
shown in Figure 4-1A. Even so, most observers are more
confident in claiming that the diuretic increased average
urine output from the data in Figure 4-1B than the data in
Figure 4-1A, even though the samples in each case are
good representatives of the underlying population. Why?

As the sample size increases, most observers become
more confident in their estimates of the population
means so they can begin to discern a difference between

49
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were treated with a drug thought to increase daily
urine production. On the average, the five people who
Drug n=20 received the drug produced more urine than the
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the people taking the placebo or the drug. Recall that
the standard error of the mean quantifies the uncer-
tainty of the estimate of the true population mean
based on a sample. Furthermore, as the sample size
increases, the standard error of the mean decreases
according to

0% 7
where 7 is the sample size and o'is the standard deviation
of the population from which the sample was drawn. As
the sample size increases the uncertainty in the estimate
of the difference of the means between the people who
received placebo and the patients who received the drug
decreases relative to the difference of the means. As a
result, we become more confident that the drug actually
has an effect. More precisely, we become less confident in
the hypothesis that the drug had no effect, in which case

is an effective diuretic? If you changed your mind,
why did you do it?

the two samples of patients could be considered two sam-
ples drawn from a single population.
To formalize this logic, we will examine the ratio

Difference in sample means

=
Standard error of difference of sample means

When this ratio is small we will conclude that the
data are compatible with the hypothesis that both sam-
ples were drawn from a single population. When this
ratio is large we will conclude that it is unlikely that the
samples were drawn from a single population and
assert that the treatment (e.g., the diuretic) produced
an effect.

This logic, while differing in emphasis from that used
to develop the analysis of variance, is essentially the same.
In both cases, we are comparing the relative magnitude of
the differences in the sample means with the amount of
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variability that would be expected from looking within
the samples.

To compute the ¢ ratio we need to know two things:
the difference of the sample means and the standard
error of this difference. Computing the difference of the
sample means is easy; we simply subtract. Computing an
estimate for the standard error of this difference is a bit
more involved. We begin with a slightly more general
problem, that of finding the standard deviation of the
difference of two numbers drawn at random from the
same population.

B THE STANDARD DEVIATION OF
A DIFFERENCE OR A SUM

Figure 4-2A shows a population with 200 members. The
mean is 0, and the standard deviation is 1. Now, suppose
we draw two samples at random and compute their differ-
ence. Figure 4-2B shows this result for the two members
indicated by solid circles in Figure 4-2A. Drawing five
more pairs of samples (indicated by different symbols in
Fig. 4-2A) and computing their differences yields the cor-
responding shaded points in Figure 4-2B. Note that there
seems to be more variability in the differences of the sam-
ples than in the samples themselves. Figure 4-2C shows

drawing another 50 pairs of numbers at random and
computing their differences. The standard deviation of
the population of differences is about 40% larger than the
standard deviation of the population from which the sam-
ples were drawn.

In fact, it is possible to demonstrate mathematically
that the variance of the difference (or sum) of two variables
selected at random equals the sum of the variances of the two
populations from which the samples were drawn. In other
words, if X is drawn from a population with standard
deviation 0, and Yis drawn from a population with stan-
dard deviation o, the distribution of all possible values
of X— Y (or X + Y) will have variance

2

o X+Y

=G =00
This result should seem reasonable to you because
when you select pairs of values that are on opposite (the
same) sides of the population mean and compute their
difference (sum), the result will be even farther from the
mean. Returning to the example in Figure 4-2, we can
observe that both the first and second numbers were
drawn from the same population whose variance was 1

and so the variance of the difference should be

. . 2 2 2
the results of Figure 4-2B, together with the results of Oy y=0y+t0,=1+1=2
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members of the population in panel A at
random and computes the difference the
population of differences, shown in panel
B, has a wider variance than the original c Soo
population. Panel C shows cl';mother 100 . .3 § 9 § § § § 8% sooo
values for differences of pairs of members o o 008009998588%39598868888%606
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Since the standard deviation is the square root of the
variance, the standard deviation of the population of dif-
ferences will be /2 times the standard deviation of the
original population, or about 40% bigger, confirming our
earlier subjective impression.*

When we wish to estimate the variance in the differ-
ence or sum of members of two populations based on the
observations, we simply replace the population variances
o’ in the equation above with the estimates of the vari-
ances computed from our samples:

Sy =Sy +50

The standard error of the mean is just the standard
deviation of the population of all possible sample means
of samples of size 7, and so we can find the standard error
of the difference of two means using the equation above.
Specifically,

S o=t
X-vy % Ty

in which case

2 2
5}_? = 5} + S?

Now we are ready to construct the ¢ ratio from the
definition in the last section.

*The fact that the sum of randomly selected variables has a variance
equal to the sum of the variances of the individual numbers explains why
the standard error of the mean equals the standard deviation divided by
Jn. Suppose we draw n numbers at random from a population with
standard deviation s. The mean of these numbers will be

v=1
X_E(X1+X2+X3+~~-+Xn)
SO
nX=X{+Xy+Xg++ X,

Since the variance associated with each of the X is a 67, the variance
of """ will be

olx=0"+0"+0 ++0’ =no’
and the standard deviation will be
0,55 = ic
But we want the standard deviation of X, which is nX/n therefore
oy = Vno/n=cin

which is the formula for the standard error of the mean. Note that we
made no assumptions about the population from which the sample
was drawn. (In particular, we did not assume that it had a normal
distribution.)

B USE OF t TO TEST HYPOTHESES
ABOUT TWO GROUPS

Recall that we decided to examine the ratio

Difference in sample means

t=
Standard error of difference of sample means

We can now use the result of the last section to trans-
late this definition into the equation

=21 2
Sf —
X%,
Xl _Xz

B 2 2
[s% +s%
Xl X2

Alternatively, we can write ¢ in terms of the sample stan-
dard deviations rather than the standard errors of the mean:

— )_(1 _*)_(2
(st m)+(s2/n)

in which # is the size of each sample.

If the hypothesis that the two samples were drawn
from the same population is true, the variances 521 and si
computed from the two samples are both estimates of the
same population variance 6. Therefore, we replace the two
different estimates of the population variance in the equa-
tion above with a single estimate, s%, that is obtained by
averaging these two separate estimates:

2 2 2
sT= Y (s]+s))
This is called the pooled-variance estimate since it is
obtained by pooling the two estimates of the population

variance to obtain a single estimate. The ¢ test statistic
based on the pooled-variance estimate is

)_(1 _}_(2
J( ) +(s*n)

The specific value of t one obtains from any two sam-
ples depends not only on whether or not there actually is
a difference in the means of the populations from which
the samples were drawn but also on which specific indi-
viduals happened to be selected for the samples. Thus, as
for F, there will be a range of possible values that  can
have, even when both samples are drawn from the same
population. Since the means computed from the two

=
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samples will generally be close to the mean of the popula-
tion from which they were drawn, the value of ¢ will tend
to be small when the two samples are drawn from the same
population. Therefore, we will use the same procedure
to test hypotheses with t as we did with F in Chapter 3.
Specifically, we will compute ¢ from the data then reject
the assertion that the two samples were drawn from the
same population if the resulting value of tis “big.”

Let us return to the problem of assessing the value of
the diuretic we were discussing earlier. Suppose the entire
population of interest contains 200 people. In addition,
we will assume that the diuretic had no effect, so that the
two groups of people being studied can be considered to
represent two samples drawn from a single population.
Figure 4-3A shows this population, together with two
samples of 10 people each selected at random for study.
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FIGURE 4-3. A population of 200

individuals and two groups selected at

random for study of a drug designed to
increase urine production but which is

totally ineffective. The people shown as B
dark circles received the placebo and

those with the lighter circles received the

drug. An investigator would not see the

entire population but just the information

as reflected in the lower part of panel A;
nevertheless, the two samples show very

little difference and it is unlikely that one

would have concluded that the drug had

an effect on urine production. Of course,

there is nothing special about the two

random samples shown in panel A, and ®

Urine production (mL/d)

an investigator could just as well have
selected the two groups of people in
panel B for study. There is more
difference between these two groups than
the two shown in panel A and there is a
chance that the investigator would think
that this difference is due to the drug’s
effect on urine production rather than
simple random sampling. (continued)
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FIGURE 4-3. (Continued) Panel C shows
yet another pair of random samples the
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investigator might have drawn for the
study.

The people who received the placebo are shown as dark
circles, and the people who received the diuretic are shown
as lighter circles. The lower part of Figure 4-3A shows the
data as they would appear to the investigator together
with the mean and standard deviations computed from
each of the two samples. Looking at these data certainly
does not suggest that the diuretic had any effect. The value
of tassociated with these samples is —0.2.

Of course, there is nothing special about these two sam-
ples and we could just as well have selected two different
groups of people to study. Figure 4-3B shows another col-
lection of people that could have been selected at random
to receive the placebo (dark circles) or diuretic (light cir-
cles). Not surprisingly, these two samples differ from each
other as well as the samples selected in Figure 4-3A. Given
only the data in the lower part of Figure 4-3B we might
think that the diuretic increases urine production. The ¢
value associated with these data is —2.1. Figure 4-3C shows
yet another pair of samples. They differ from each other
and the other samples considered in Figure 4-3A and 4-3B.
The samples in Figure 4-3C yield a value of 0 for .

We could continue this process for quite a long time
since there are more than 107 different pairs of samples of
10 people each that we could draw from the population of
200 individuals shown in Figure 4-3A. We can compute a
value of t for each of these 10”7 different pairs of samples.
Figure 4-4 shows the values of tassociated with 200 different

pairs of random samples of 10 people each drawn from
the original population, including the three specific pairs
of samples shown in Figure 4-3. The distribution of pos-
sible # values is symmetrical about ¢ = 0 because it does
not matter which of the two samples we subtract from the
other. As predicted, most of the resulting values of f are
close to zero; t rarely is below about —2 or above +2.

Figure 4-4 allows us to determine what a “big” ¢ is.
Figure 4-4B shows that # will be less than —2.1 or greater
than +2.1 10 out of 200, or 5% of the time. In other
words, there is only a 5% chance of getting a value of ¢
more extreme than —2.1 or +2.1 when the two samples
are drawn from the same population. Just as with the F
distribution, the number of possible ¢ values rapidly
increases beyond 10”7 as the population size grows, and
the distribution of possible ¢ values approaches a smooth
curve. Figure 4-4C shows the result of this limiting pro-
cess. We define the cutoff values for ¢ that are large
enough to be called “big” on the basis of the total area in
the two tails. Figure 4-4C shows that only 5% of the pos-
sible values of ¢ will lie beyond —2.1 or +2.1 when the
two samples are drawn from a single population. When
the data are associated with a value of ¢ beyond this
range, it is customary to conclude that the data are
inconsistent with the null hypothesis of no difference
between the two samples and report that there was a dif-
ference in treatment.
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FIGURE 4-4. The results of 200 studies
like that described in Figure 4-3; the three
specific studies from Figure 4-3 are

indicated in panel A. Note that most T T
values of the t statistic cluster around O,
but it is possible for some values of t to be
quite large, exceeding 1.5 or 2. Panel B
shows that there are only 10 chances in
200 of t exceeding 2.1 in magnitude if the
two samples were drawn from the same

population. If one continues examining all
possible samples drawn from the
population and our pairs of samples drawn
from the same population, one obtains a
distribution of all possible t values which
becomes the smooth curve in panel C. In
this case, one defines the critical value of t
by saying that it is unlikely that this value

Value of t

of t statistic was observed under the
hypothesis that the drug had no effect by
taking the 5% most extreme error areas
under the tails of distribution and selecting
the t value corresponding to the beginning
of this region. Panel D shows that if one
required a more stringent criterion for
rejecting the hypothesis for no difference

by requiring that t be in the most extreme _-
1% of all possible values, the cutoff value
of tis 2.878.

The extreme values of ¢ that lead us to reject the
hypothesis of no difference lie in both tails of the dis-
tribution. Therefore, the approach we are taking is
sometimes called a two-tailed t test. Occasionally, peo-
ple use a one-tailed  test, and there are indeed cases
where this is appropriate. One should be suspicious of
such one-tailed tests, however, because the cutoff value
for calling t “big” for a given value of P is smaller. In
reality, people are almost always looking for a difference
between the control and treatment groups so a two-
tailed test is appropriate. This book always assumes a
two-tailed test.

Note that the data in Figure 4-3B are associated with a
t value of —2.1, which we have decided to consider “big.”
If all we had were the data shown in Figure 4-4B, we would
conclude that the observations were inconsistent with the
hypothesis that the diuretic had no effect and report that
it increased urine production, and even though we did the
statistical analysis correctly, our conclusion about the drug
would be wrong.

-1.0 0 2.0 3.0

Value of t

Reporting P < .05 means that if the treatment had no
effect, there is less than a 5% chance of getting a value of ¢
from the data as far or farther from 0 as the critical value
for tto be called “big.” It does not mean it is impossible to
get such a large value of t when the treatment has no
effect. We could, of course, be more conservative and say
that we will reject the hypothesis of no difference between
the populations from which the samples were drawn if ¢is
in the most extreme 1% of possible values. Figure 4-4D
shows that this would require f to be beyond —2.88 or
+2.88 in this case, so we would not erroneously conclude
that the drug had an effect on urine output in any of the
specific examples shown in Figure 4-3. In the long run,
however, we will make such errors about 1% of the time.
The price of this conservatism is decreasing the chances of
concluding that there is a difference when one really exists.
Chapter 6 discusses this trade-off in more detail.

The critical values of ¢, like F, have been tabulated and
depend not only on the level of confidence with which
one rejects the hypothesis of no difference—the P
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value— but also on the sample size. As with the F distri-
bution, this dependence on sample size enters the table
as the degrees of freedom, v, which is equal to 2(n — 1) for
this ¢ test, where # is the size of each sample. As the sam-
ple size increases the value of # needed to reject the
hypothesis of no difference decreases. In other words, as
sample size increases it becomes possible to detect
smaller differences with a given level of confidence.
Reflecting on Figure 4-1 should convince you that this is
reasonable.

B WHAT IF THE TWO SAMPLES
ARE NOT THE SAME SIZE?

It is easy to generalize the t test to handle problems in
which there are different numbers of members in the two
samples being studied. Recall that ¢ is defined by

X, -X,
2 2
|s% +s%
Xl XZ
in which 5% and sy, are the standard errors of the means

of the two slamples. If the first sample is of size #, and the
second sample contains 7, members,

t=

2
s
1 2 _
and sy =

2
s~ =—
Ln, 2

X

3 |I\Jml\)

)

in which s, and s, are the standard deviations of the two
samples. Use these definitions to rewrite the definition of
tin terms of the sample standard deviations

Xl _)_(2
(52/11 )+(sz/n )
11 21772

When the two samples are different sizes, the pooled
estimate of the variance is given by

&2 (n,— 1)512 +(n, — l)sj

n+n,—2
so that
}1 _yz
2 2
(s°/n)+(s"/n,)

This is the definition of ¢ for comparing two samples
of unequal size. There are v = n, + n, — 2 degrees of
freedom.

Notice that this result reduces to our earlier results
when the two sample sizes are equal, that is, when n, =
n, = n.

B CELL PHONES REVISITED

The study by Fejes and colleagues about the relationship
of cell phone use and rapid sperm motility we discussed
in Chapter 3 had two observational groups, 61 men who
used cell phones less than 15 minutes/day and 61 men
who used cell phones more than 60 minutes/day, so we
can analyze their data using a ¢ test, as well as an analysis
of variance. From Figure 3-7, the mean percentage of rap-
idly mobile sperm was 49% for the low use group and
41% for the high use group. The standard deviations were
21% and 22%, respectively. Because the sample sizes are
equal,*

1
2 1,2 2
s = E(Slow + shigh)

1
= 5(212 +22%)=462.5%"

and
= Xlow high
2 2
S S
—+
Mow nhigh
49-41
t=——=2.054
462.5 + 462.5
61 61

with v=2(n—1) = 2(61 — 1) = 120 degrees of freedom.
Table 4-1 shows that the magnitude of #should only exceed
1.980 only 5% of the time by chance when the null hypoth-
esis is true, in this case, that cell phone exposure does not
affect rapid sperm motility (P < .05). Since the magnitude
of t associated with the data exceeds 1.980, we reject the
null hypothesis and conclude that cell phone use is associ-
ated with rapid sperm motility.

*We would have obtained precisely the same value had we used the gen-
eral formula for the pooled variance:

2 2
e (Mg = DS g+ (i, = DSy

Mgy F iy, =2

2 (61-1)21° +(61-1)22° _ 60-21° +60-22°

61+61-2 2-60

= 462.5%”
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B TABLE 4-1. Critical Values of t (Two-Tailed)

-t 0 +t
Probability of Greater Value (P)

% 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001
1 1.000 3.078 6.314 12.706 31.821 63.657 127.321 318.309 636.619
2 0.816 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.599
3 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.215 12.924
4 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.711 1.415 1.895 2.365 2.998 3.449 4.029 4.785 5.408
8 0.706 1.397 1.860 2.306 2.896 SES55 3.833 4.501 5.041
9 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587

11 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437

12 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318

13 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221

14 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

15 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073

16 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015

17 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965

18 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922

19 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883

20 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850

21 0.686 1.323 1.721 2.080 2.518 2.831 SEISH 3.527 3.819

22 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792

23 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.768

24 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745

25 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725

26 0.684 il &l 1.706 2.056 2.479 2.779 3.067 3.435 3.707

27 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690

28 0.683 AL BHLE) 1.701 2.048 2.467 2.763 3.047 3.408 3.674

29 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659

30 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646

31 0.682 1.309 1.696 2.040 2.453 2.744 3.022 3.375 3.633

32 0.682 1.309 1.694 2.037 2.449 2.738 3.015 3.365 3.622

&8 0.682 1.308 1.692 2.035 2.445 2.733 3.008 3.356 3.611

34 0.682 1.307 1.691 2.032 2.441 2.728 3.002 3.348 3.601

&5 0.682 1.306 1.690 2.030 2.438 2.724 2.996 3.340 BRSOl

36 0.681 1.306 1.688 2.028 2.434 2.719 2.990 5. 8158 3.582

81 0.681 1.305 1.687 2.026 2.431 2.715 2.985 3.326 3.574

38 0.681 1.304 1.686 2.024 2.429 2.712 2.980 SRS 3.566

(continued)
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B TABLE 4-1. Critical Values of t (Two-Tailed) (Continued)

Probability of Greater Value (P)
\% 0.50 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001
8o 0.681 1.304 1.685 2.023 2.426 2.708 2.976 8. 8LE 3.558
40 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 SRS 5l
42 0.680 1.302 1.682 2.018 2.418 2.698 2.963 3.296 3.538
44 0.680 1.301 1.680 2.015 2.414 2.692 2.956 3.286 3.526
46 0.680 1.300 1.679 2.013 2.410 2.687 2.949 3.277 85ils)
48 0.680 1.299 1.677 2.011 2.407 2.682 2.943 3.269 3.505
50 0.679 1.299 1.676 2.009 2.403 2.678 2.937 2.261 3.496
52 0.679 1.298 1.675 2.007 2.400 2.674 2.932 3.255 3.488
54 0.679 1.297 1.674 2.005 2.397 2.670 2.927 3.248 3.480
56 0.679 1.297 1.673 2.003 2.395 2.667 2.923 3.242 3.473
58 0.679 1.296 1.672 2.002 2.392 2.663 2.918 3.237 3.466
60 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460
62 0.678 1.295 1.670 1.999 2.388 2.657 2.911 3.227 3.454
64 0.678 1.295 1.669 1.998 2.386 2.655 2.908 3.223 3.449
66 0.678 1.295 1.668 1.997 2.384 2.652 2.904 3.218 3.444
68 0.678 1.294 1.668 1.995 2.382 2.650 2.902 3.214 3.439
70 0.678 1.294 1.667 1.994 2.381 2.648 2.899 3.211 3.435
72 0.678 il 2ef8 1.666 1.993 2.379 2.646 2.896 3.207 3.431
74 0.678 1.293 1.666 1.993 2.378 2.644 2.894 3.204 3.427
76 0.678 1.293 1.665 1.992 2.376 2.642 2.891 3.201 3.423
78 0.678 1.292 1.665 1.991 2.375 2.640 2.889 3.198 3.420
80 0.678 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416
90 0.677 1.291 1.662 1.987 2.368 2.632 2.878 3.183 3.402
100 0.677 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390
120 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3378
140 0.676 1.288 1.656 1.977 2,458 2.611 2.852 3.149 3.361
160 0.676 1.287 1.654 1.975 2.350 2.607 2.846 3.142 8. 82
180 0.676 1.286 1.653 1.973 2.347 2.603 2.842 3.136 3.345
200 0.676 1.286 1.653 1.972 2.345 2.601 2.839 3.131 3.340
oo 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 2.8070 3.0902 3.2905
Normal 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 2.8070 3.0902 3.2905
Adapted from Zar JH. Biostatistical Analysis, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall; 1984, 484-485:table B.3, by permission of Pearson
Education, Inc., Upper Saddle River, NJ.

This is the same conclusion and same Pvalue we obtained
when analyzing the data using analysis of variance.

Fejes and colleagues also measured total sperm motil-
ity, this time in different numbers of men in the two sam-
ples of cell phone users. Box 4-1 shows the data and
calculation of the associated ¢ test. The ¢ value for these
data fall between the critical values of 0.667 and 1.289 that

define the 50% and 20% extremes of the t distribution,
which is nowhere near the value of 1.980 that defines the
most extreme 5%, the cutoff used to define traditional
statistical significance. Thus, we do not have strong
enough evidence to reject the null hypothesis that there is
no relationship between cell phone exposure and total
sperm motility.
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BOX 4-1 - Effect of Low Versus High Cell Phone Use on Overall Sperm Motility

Total Sperm Motiility (%)

Observed Cell Phone Use

Low use (<15 min/d)
High use (>60 min/d)

Sample Size (n)
120
62

Mean Standard Deviation
60 19
57 17

Because the sample sizes are different, we compute the pooled variance estimate with

2 (nlow B low

1)s2 + (N pign — 1)s§igh

S =

Ny + nhigh -2

2 (120- 1)19° + (62 -1)172

= 336.6%>

120+62-2

and so

1=
S S

Xiow — Xhigh
% 5

—_ —

nlow

Mhign

60 - 57

=

— +
120

336.6 336.6

=1.045

62

with v.=n,,, + Ny, — 2 = 180 degrees of freedom. This value of t does not even approach 1.973, the critical value
for the most extreme 5% of the t distribution used to define conventional statistical significance, so we do not
reject the null hypothesis of no effect of cell phone use on overall sperm motility.

Does this result prove that there really is not an effect?
No. It just means that we do not have enough evidence to
reject the null hypothesis of no effect. (We will return to
the question of how confident we can be in drawing nega-
tive conclusions when results do not reach statistical sig-
nificance in Chapter 6.)

B THE tTEST IS AN ANALYSIS
OF VARIANCE*

The t test we just developed and analysis of variance we
developed in Chapter 3 are really two different ways of
doing the same thing. Since few people recognize this, we

*This section represents the only mathematical proof in this book and as
such is a bit more technical than everything else. The reader can skip this
section with no loss of continuity.

will prove that when comparing the means of two groups,
F=t*. In other words, the ¢ test is simply a special case of
analysis of variance applied to two groups.

We begin with two samples, each of size 1, with means
and standard deviations XI and Xz and s, and s,, respec-
tively.

To form the Fratio used in analysis of variance, we first
estimate the population variance as the average of the
variances computed for each group

2 2 2
wit:%(sl +5))

Next, we estimate the population variance from the
sample means by computing the standard deviation of the
sample means with

S,

(X, - X) +(X, - X)’
%= 2-1
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Therefore

se=(X, - X’ +(X,-X)’
in which X is the mean of the two sample means
X=Y(X +X,)
Eliminate X from the equation for szy to obtain
se=[X, - (X, +X,)P+[X, - (X, +X,)T
:(%il _%§2)2+(%§2 _%XI)Z

Since the square of a number is always positive, (a — b)* =
(b— a)? and the equation above becomes

ss=SX = BX )+ (X, - 5 X,)
=20/(X, =X, = 45X, - X,)’
Therefore, the estimate of the population variance
from between the groups is
sfm = ns;( = (1’1/2)(?1 —Xz )

Finally, Fis the ratio of these two estimates of the pop-
ulation variance

)X, -X,)  (X,-X,)

2
F= et _ _
So K6 (SS)+(sn)
2

_ )_<1 _Xz
«/(sf/n) +(s§/n)

The quantity in the brackets is ¢, hence
F=+t

The degrees of freedom for the numerator of Fequals
the number of groups minus 1, thatis, 2 — 1 = 1 for all
comparisons of two groups. The degrees of freedom for
the denominator equals the number of groups times 1
less than the sample size of each group, 2(n — 1), which
is the same as the degrees of freedom associated with the
t test.

In sum, the 7 test and analysis of variance are just two
different ways of looking at the same test for two groups.
Of course, if there are more than two groups, one cannot
use the ¢ test form of analysis of variance but must use the
more general form we developed in Chapter 3.

As noted earlier, we drew the same conclusion about
the effects of cell phone use on rapid sperm motility
when analyzing the results using analysis of variance in
Chapter 3 and using a t test in this chapter. As expected,
the degrees of freedom for the t test, v, is 120, the same as
the denominator degrees of freedom for the analysis of
variance, v, and the square of the t value we obtained,
2.054% equals the value of F we obtained from the analy-
sis of variance, 4.22.

B COMMON ERRORS IN THE USE OF
THE t TEST AND HOW TO
COMPENSATE FOR THEM

The ¢ test is used to compute the probability of being
wrong, the Pvalue, when asserting that the mean values of
two treatment groups are different, when, in fact, they were
drawn from the same population. It is also used widely
but erroneously to test for differences between more than
two groups by comparing all possible pairs of means with
t tests.

For example, suppose an investigator measured blood
sugar under control conditions, in the presence of drug A,
and in the presence of drug B. It is common to perform
three ¢ tests on these data: one to compare control versus
drug A, one to compare control versus drug B, and one to
compare drug A versus drug B. This practice is incorrect
because the true probability of erroneously concluding
that the drug affected blood sugar is actually higher than
the nominal level, say 5%, used when looking up the “big”
cutoff value of the ¢ statistic in a table.

To understand why, reconsider the experiment
described in the last paragraph. Suppose that if the value
of the ¢ statistic computed in one of the three compari-
sons just described is in the most extreme 5% of the val-
ues that would occur if the drugs really had no effect, we
will reject that assumption and assert that the drugs
changed blood sugar. We will be satisfied if P <.05; in
other words, in the long run we are willing to accept the
fact that 1 statement in 20 will be wrong. Therefore, when
we test control versus drug A, we can expect erroneously
to assert a difference 5% of the time. Similarly, when test-
ing control versus drug B, we expect erroneously to assert
a difference 5% of the time, and when testing drug A ver-
sus drug B, we expect erroneously to assert a difference
5% of the time. Therefore, when considering the three
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tests together, we expect to conclude that at least one pair
of groups differs about 5% + 5% + 5% = 15% of the time,
even if in reality the drugs did not affect blood sugar.
(As we will see later, P actually equals 14%.) If there are
not too many comparisons, simply adding the P values
obtained in multiple tests produces a realistic and con-
servative estimate of the true P value for the set of com-
parisons.

In the example above, there were three ¢ tests, so the
effective P value was about 3(.05) = .15 or 15%. When
comparing four groups, there are six possible ¢ tests (1 ver-
sus 2, 1 versus 3, 1 versus 4, 2 versus 3, 2 versus 4, 3 versus
4), so if the author concludes that there is a difference and
reports P < .05, the effective P value is about 6 (.05) =.30;
there is about a 30% chance of at least one incorrect state-
ment if the author concludes that the treatments had an
effect!

In Chapter 2, we discussed random samples of Mar-
tians to illustrate the fact that different samples from the
same population yield different estimates of the popula-
tion mean and standard deviation. Figure 2-5 showed
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FIGURE 4-5. Results of a study of human hormones on
Martians as it would be commonly presented in the
medical literature. Each large bar has a height equal to the
mean of the group; the small vertical bars indicate 1
standard error of the mean on either side of the mean (not
1 standard deviation).

three such samples of the heights of Martians, all drawn
from a single population. Suppose we chose to study how
these Martians respond to human hormones. We draw
three samples at random, give one group a placebo, one
group testosterone, and one group estrogen. Suppose that
these hormones have no effect on the Martians’ heights.
Thus, the three groups shown in Figure 2-5 represent
three samples drawn at random from the same popula-
tion.

Figure 4-5 shows how these data would probably
appear in a typical medical journal. The large vertical
bars denote the value of the mean responses, and the
small vertical bars denote 1 standard error of the mean
above or below the sample means. (Showing 1 standard
deviation would be the appropriate way to describe vari-
ability in the samples.) Many authors would analyze these
data by performing three t tests: placebo against testoster-
one, placebo against estrogen, and testosterone against
estrogen. These three tests yield ¢ values of 2.39,0.93, and
1.34, respectively. Since each test is based on 2 samples of
10 Martians each, there are 2(10 — 1) = 18 degrees of
freedom. From Table 4-1, the critical value of t with a 5%
chance of erroneously concluding that a difference exists
is 2.101. Thus, the author would conclude that testoster-
one produced shorter Martians than placebo, whereas
estrogen did not differ significantly from placebo, and
that the two hormones did not produce significantly dif-
ferent results.

Think about this result for a moment. What is wrong
with it? If testosterone produced results not detectably dif-
ferent from those of estrogen and estrogen produced results
not detectably different from those of placebo, how can tes-
tosterone have produced results different from placebo? Far
from alerting medical researchers that there is something
wrong with their analysis, this illogical result usually leads
to a very creatively written “Discussion” section in their
paper.

An analysis of variance of these data yields F = 2.74
[with numerator degrees of freedom =m —1=3 -1=2
and denominator degrees of freedom m(n—1) =3(10 —1)
= 27], which is below the critical value of 3.35 we have
decided is required to assert that the data are incompatible
with the hypothesis that all three treatments acted as pla-
cebos.

Of course, performing an analysis of variance does not
ensure that we will not reach a conclusion that is actually
wrong, but it will make it less likely.
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We end our discussion of common errors in the use of
the f test with three rules of thumb:

o Thet test can be used to test the hypothesis that two group
means are not different.

» When the experimental design involves multiple groups,
analysis of variance should be used.

* When t tests are used to test for differences between
multiple groups, it is not appropriate simply to use
multiple t tests to do pairwise comparisons of the
groups.

M HOW TO USE t TESTS TO
ISOLATE DIFFERENCES
BETWEEN GROUPS IN ANALYSIS
OF VARIANCE

The last section demonstrated that when presented with
data from experiments with more than two groups of
subjects, one must do an analysis of variance to deter-
mine how inconsistent the observations are with the
hypothesis that all the treatments had the same effect.
Doing pairwise comparisons with f tests increases the
chances of erroneously reporting an effect above the
nominal value, say 5%, used to determine the value of a
“big” t. The analysis of variance, however, only tests the
global hypothesis that all the samples were drawn from a
single population. In particular, it does not provide any
information on which sample or samples differed from
the others.

There are a variety of methods, called multiple-
comparison procedures, that can be used to provide infor-
mation on this point. All are essentially based on the ¢ test
but include appropriate corrections for the fact that we are
comparing more than one pair of means. We will develop
several approaches, beginning with the Bonferroni cor-
rected t test, or, more simply, the Bonferroni t test. The gen-
eral approach we take is first to perform an analysis of
variance to test the overall null hypothesis of no differ-
ences, then use a multiple-comparison procedure to iso-
late the treatment or treatments producing the different
results.*

*Some statisticians believe that this approach is too conservative and that
one should skip the analysis of variance and proceed directly to the mul-
tiple comparisons of interest.

The Bonferroni t Test

In the previous section, we saw that if one analyzes a set
of data with three t tests, each using the 5% critical
value for concluding that there is a difference, there is
about a 3(5) = 15% chance of finding it. This result is a
special case of a formula called the Bonferroni inequal-
ity, which states that if k statistical tests are performed
with the cutoff value for the test statistics, for example,
tor F, at the a level, the likelihood of observing a value
of the test statistic exceeding the cutoff value at least
once when the treatments did not produce an effect
is no greater than k times o. Mathematically, the
Bonferroni inequality states

o< koo

where ¢ is the true probability of erroneously concluding
a difference exists at least once. o, is the error rate we want
to control. From the equation above,

%
k

Thus, if we do each of the ¢ tests using the critical
value of t corresponding to a1/k, the error rate for all the
comparisons taken as a group will be at most ¢ .. For
example, if we wish to do three comparisons with ¢ tests
while keeping the probability of making at least one
false-positive error to less than 5%, require that the P
value associated with each value of t be smaller than
.05/3 = 1.67% for each of the individual comparisons.
This procedure is called the Bonferroni corrected t test or,
more simply, the Bonferroni t test, because it is based on
the Bonferroni inequality.

This procedure works reasonably well when there are
only a few groups to compare, but as the number of
comparisons k increases above 3 or 4, the value of ¢
required to conclude that a difference exists becomes
much larger than it really needs to be and the method
becomes overly conservative. One way to make the Bon-
ferroni f test less conservative is to use the estimate of the
population variance computed from within the groups
in the analysis of variance. Specifically, recall that we
defined ¢ as

Xl — )_(2
(52/111 )+ (sz/nz)

where s” is an estimate of the population variance. We will
replace this estimate with the population variance estimated
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from within the groups as part of the analysis of variance,
52 ,to obtain

wit?

}1_X2

(s

wit

In)+(s.. /n,)

The degrees of freedom for this test are the same as the
denominator degrees of freedom for the analysis of vari-
ance and will be higher than for a simple ¢ test based on
the two samples being compared. Since the critical value
of tdecreases as the degrees of freedom increase, it will be
possible to detect a difference with a given confidence
with smaller absolute differences in the means.

More on Cell Phones and Rabbit Sperm

In Chapter 3 we analyzed the data in Box 3-1 and con-
cluded that they were inconsistent with the null hypoth-
esis that the three sample groups of rabbits— ordinary
controls in regular rabbit cages, stress controls in more
restrictive cages, and cell phone exposed rabbits in
restricted cages where their testes were exposed to cell
phone radiation for 8 hours a day—were drawn from
populations with the same mean sperm motility. At the
time, however, we were unable to isolate where the differ-
ence came from. Now we can use the Bonferroni  test to
compare the three groups pairwise.

From Box 3-1, our best estimate of the within-groups
variance szm is 7.11%”. There are m = 3 samples, each con-
sisting of n = 8 rabbits, so thereare m(n—1) =3(8-1) =
21 degrees of freedom associated with the estimate of the
within-groups variance. (By comparison, if we just used
the pooled variance from the two samples in each pairwise
comparison, there would only be 2[n—1] =2[8 — 1] = 14
degrees of freedom.)

We do the three pairwise comparisons by computing the
corresponding three values of ¢ using the within-groups

variance from the analysis of variance. To compare the ordi-
nary control with the cell phone exposure,

¢ _ Xordinary _Xphone _ 72-50 —1.501
ord vs phone — 5 5 - — L
wit Siit 7.11 7.11
nordinary nphone 8 8

To compare the stress control with the cell phone expo-
sure,

Xtress — X 61-50
tstress vs phone = Strzess P]:me = 711 7.11 =8.251
wit + wit T + T
nstress nphone

To compare the ordinary control with the stress control,

_ Xordinary - Xstress _ 72-61

3 = = =8.251
ord vs stress 52A 52 . 711 7.11
wit + wit T + T
nordinary Mytress

There are three comparisons, so to have an overall
family error rate of less than 5% we require that the P
value associated with each of these three comparisons to
be smaller than .05/3 = .0167. (Table 4-2 summarizes the
three pairwise comparisons.) All three ¢ values exceed
4.140, the critical value for P < .001 with 14 degrees of
freedom (in Table 3-1), which is much smaller than the
required .0167, so we conclude that all three groups are
different from each other.

In other words, rabbits in the stress cage have signifi-
cantly lower sperm motility than rabbits in the ordinary
cage and rabbits exposed to cell phone radiation have sig-
nificantly lower sperm motility than rabbits in the stress
cage (as well as the rabbits in the ordinary cage). Thus, we
conclude that, while the limited cage space led to lower
sperm motility, the cell phone radiation further lowered

B TABLE 4-2. Pairwise Comparisons of Sperm Motility in Rabbit Cell Phone Experiment Using Bonferroni t Tests

(Family Error Rate, o; = 0.05)

Comparison t P P o/k P<P.?
Ordinary control vs. cell phone 16.501 <.001 .0167 Yes
Stress control vs. cell phone 8.251 <.001 .0167 Yes
Ordinary control vs. stress control 8.251 <.001 .0167 Yes

v = 21 degrees of freedom; k = 3 comparisons.
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sperm motility. Since these data came from an experimental
rather than an observational study, we can conclude that
the cell phone radiation caused the reduction in sperm
motility in these rabbits (as did the stress of being in a
cramped cage).

Note that the three ¢ pairwise comparisons are listed in
declining order based on the value of rassociated with the
comparison, from largest to smallest difference. While
doing the tests in the order from largest to smallest differ-
ence is not required when doing Bonferroni f tests, it is
standard practice. The more powerful Holm-Sidak cor-
rected ¢ test that we discuss next requires that the tests be
done in order from largest to smallest difference, as mea-
sured by the t values associated with the individual com-
parisons.

A Better Approach to Multiple
Comparisons: The Holm t Test

There have been several refinements of the Bonferroni
t test designed to maintain the computational simplic-
ity while avoiding the excessive caution that the Bon-
ferroni correction brings. We begin with the Holm
corrected t test or, more simply, the Holm t test.* The
Holm correction is nearly as easy to compute as the
Bonferroni correction, but yields a more powerful test."
The Holm ¢ test is a so-called sequentially rejective, or
step-down, procedure because it applies an accept/
reject criterion to a set of ordered null hypotheses,
starting with the smallest P value, and proceeding until
it fails to reject a null hypothesis.

To perform the Holm ¢ test, we compute the family of
pairwise comparisons of interest (with ¢ tests using the
pooled variance estimate from the analysis of variance as
we did with the Bonferroni ¢ test) and determine the P
value for each test in the family. We then compare these

*Holm S. A simple sequentially rejective multiple test procedure. Scand |
Stat. 1979;6:65-70.

{Other multiple comparisons include the Tukey ¢ test, Student-Neuman-
Keuls test, and Dunnett test. The Holm test is superior to these older tests.
For more details, see Ludbrook J. Multiple comparison procedures up-
dated. Clin Exp Pharmacol Physiol. 1998;25:1032—1037; Aickin M,
Gensler H. Adjusting for multiple testing when reporting research results:
the Bonferroni vs. Holm methods. Am ] Public Health. 1996;86:726-728;
Levin B. Annotation: on the Holm, Simes, and Hochberg multiple test
procedures. Am J Public Health. 1996;86:628-629; Brown BW, Russel K.
Methods for correcting for multiple testing: operating characteristics.
Stat Med. 1997;16:2511-2528; Morikawa T, Terao A, Iwasaki M. Power
evaluation of various modified Bonferroni procedures by a Monte Carlo
study. ] Biopharm Stat. 1996;6:343—359.

P values to critical values that have been adjusted to con-
trol the overall family error rate when doing the multiple
comparisons.

In contrast to the Bonferroni correction, however, we
take into account how many tests we have already done
and become less conservative with each subsequent com-
parison. We begin with a correction just as conservative as
the Bonferroni correction, then take advantage of the con-
servatism of the earlier tests and become less cautious
with each subsequent comparison.

Suppose we wish to make k pairwise comparisons.
Order these k uncorrected P values from smallest to largest,
with the smallest uncorrected P value considered first in the
sequential step-down test procedure. (Because all the Pval-
ues are based on the same number of degrees of freedom,
this ordering is the same as ordering the comparisons based
on the magnitude of ¢ from largest to smallest, without
regard for the signs associated with the individual ¢ tests.)
P, is the smallest P value in the sequence (corresponding to
the most extreme pairwise comparison) and P, is the larg-
est. For the jth hypothesis test in this ordered sequence,
Holm’s test applies the Bonferroni criterion in a step-down
manner that depends on k and j, beginning with j = 1, and
proceeding until we fail to reject the null hypothesis or run
out of comparisons to do. Specifically, the uncorrected P
value for the jth test is compared to o;= o/ (k—j+1).For
the first comparison, j = 1, and the uncorrected P value
needs to be smaller than o = o/(k — 1 + 1) = o/, the
same as the Bonferroni correction. If this smallest observed
P value is less than o, we reject that null hypothesis and
then compare the next smallest uncorrected P value with
0, = ap/(k—=2+1) = o /(k — 1), which is a larger cutoff
than we would obtain just using the Bonferroni correction.
Because this critical value is larger, the test is less conserva-
tive and more powerful.

In the example of the relationship between cell phone
exposure and sperm motility we have been discussing,
there are k = 3 pairwise comparisons of interest, so to
maintain an overall family error rate, &, of 5%, the P
value associated with the first (j = 1) of these ordered
hypotheses (comparisons) will have to be smaller than
.05/(3 -1+ 1) =.05/3 =.0167, which is identical to the
Bonferroni correction we applied previously to each of
the members of this family of three tests. The comparison

t

“Like the Bonferroni correction, the Holm correction can be applied to
any family of hypothesis tests, not just multiple pairwise comparisons.
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B TABLE 4-3. Pairwise Comparisons of Sperm Motility in Rabbit Cell Phone Experiment Using Holm t Tests

(Family Error Rate, o; = .05)

Comparison t [? j P..=oq/(k -j+1)* P<P,?
Ordinary control vs. cell phone 16.501 <.001 1 .0167 Yes
Stress control vs. cell phone 8.251 <.001 2 .0250 Yes
Ordinary control vs. stress control 8.251 <.001 & .0500 Yes

v = 21 degrees of freedom; k = 3 comparisons.

*The Holm-Sidak calculation of P, = 1 — (1 — o5)*7*? gives .0170, .0253, and .0500.

with the largest magnitude of , Ordinary Control versus
Cell Phone, has a tequal to 13.503. For 21 degrees of free-
dom, this value of tis associated with P < .001, so we
reject the null hypothesis that these two samples were
drawn from populations with the same mean sperm
motility (Table 4-3).

Because the null hypothesis was rejected at this first
step, we proceed to the next step, j = 2, using the rejection
criterion that the P value associated with the second ¢ is
smaller than .05/(3 — 2 — 1) = .0250. The ¢ value for this
second test, 8.250, is associated with P < .001, which is
smaller than .0250, so we reject the null hypothesis that
the Stress Control and Cell Phone samples were drawn
from populations with the same mean sperm motility and
proceed to the third comparison.

For the third, and final, comparison, j = 3, we use the
rejection criterion that the Pvalue associated with the sec-
ond tis smaller than .05/(3 — 3 — 1) = .05, which means
that we do no adjustment at all for the final comparison.
The t value for this third test, 6.752, is associated with
P <.001, which is smaller than .050, so we reject the null
hypothesis that the Ordinary Control and Stress Control
samples were drawn from populations with the same
mean sperm motility and are finished.

As when we used the Bonferroni ¢ test, all three experi-
mental groups differed from each other. If, however, any
of the comparisons had been associated with P values
larger than the appropriate P_;, we would have stopped
the test and declared that all subsequent comparisons
nonsignificant.

Despite reaching the same conclusion that we did when
using the single-step Bonferroni t test, you can see by
comparing the P_. values in Tables 4-2 and 4-3 that the
progressively less stringent requirement for rejecting the
null hypothesis with the Holm test it becomes easier to

reject the null hypothesis for all but the first comparison
compared with the Bonferroni procedure.

The Holm-Sidak t Test

As noted earlier, the Bonferroni inequality, which forms
the basis for the Bonferroni #test and, indirectly, the Holm
test, gives a reasonable approximation for the total risk of
a false-positive in a family of k comparisons when the
number of comparisons is not too large, around 3 or 4.
The actual probability of at least one false-positive conclu-
sion (when the null hypothesis of no difference is true) is
given by the formula

ap=1-(1- o)

When there are k= 3 comparisons, each done at the o=
0.05 level, the Bonferroni inequality says that the total risk
of at least one false-positive is less than ko= 3 x 0.05 = .150.
This probability is reasonably close to the actual risk of at
least one false-positive statement given by the equation
above, 1 — (1 — 0.05)° = .143. As the number of compari-
sons increases, the Bonferroni inequality more and more
overestimates the true false-positive risk. For example, if
there are k= 6 comparisons, ko= 6 x 0.05 = .300 compared
with the actual probability of at least one false-positive of
.265, nearly 10% lower. If there are 12 comparisons, the
Bonferroni inequality says that the risk of at least one false-
positive is below 12 X 0.05 = .600, 25% above the true risk
of .460. Table 4-4 gives the Holm-Sidak critical Pvalues for
various numbers of comparisons.

The Holm-Sidak corrected t test, or Holm-Sidak t test,
is a further refinement of the Holm corrected  test that
is based on the exact formula for ¢ rather than the
Bonferroni inequality. The Holm-Sidak corrected ¢ test
works just like the Holm corrected ¢ test, except that the
criteria for rejecting the jth hypothesis test in an ordered
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B TABLE 4-4. Holm-Sidak Critical P Values for Individual Comparisons to Maintain a 5% Family Error Rate (co; = .05)

Total Number of Comparisons (k)

Comparison .

Number (j) 1 2 S 4 5 6 7 8 9 10 11 12 13 14 15
1 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051 .0047 .0043 .0039 .0037 .0034
2 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051 .0047 .0043 .0039 .0037
3 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051 .0047 .0043 .0039
4 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051 .0047 .0043
B .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051 .0047
6 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057 .0051
7 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064 .0057
8 .0500 .0253 .0170 .0127 .0102 .0085 .0073 .0064
© .0500 .0253 .0170 .0127 .0102 .0085 .0073
10 .0500 .0253 .0170 .0127 .0102 .0085
11 .0500 .0253 .0170 .0127 .0102
12 .0500 .0253 .0170 .0127
13 .0500 .0253 .0170
14 .0500 .0253
15 .0500

P.=1-

crit

(1 _ aT):l/(k—j+1)'
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sequence of k tests is an uncorrected P value below
1-(1- ocT)”(k_jH) rather than the o /(k—j+ 1) used in
the Holm test. This further refinement makes the Holm-
Sidak test slightly more powerful than the Holm test.

The differences between the Holm and Holm-Sidak
corrections are small. For example, if there are k = 20
comparisons, the differences between the resulting thresh-
old values for P are in the fourth decimal place. To illus-
trate this difference, the Holm-Sidak value of P_;, for the
first comparison (j= 1) of the k = 3 pairwise comparisons
in the cell phone example in Box 4-2 to control the family
error rate o, at .05 isis 1 — (1 — o)/ =1-(1 -
05)FH =1 — 9517 =1 — 957 =1 — 983 = 0170,
slightly larger than the .0167 for the Holm critical value.

Box 4-2 shows all pairwise comparisons for sperm motil-
ity in the four groups of cell phone users that we analyzed in
Chapter 3 using all three multiple comparison methods dis-
cussed in this chapter. In this case, we conclude that sperm
motility in the Control and Low Use (<2 hour/day) are not
significantly different, but that this subset of two groups dif-
fers significantly from the Medium Use (2 to 4 hour/day) use
group, which also differs from the High Use (>4 hour/day)
group. The fact that many, if not most of the men in the
High Use group in the study by Fejes and colleagues (defined
as using cell phones more than 1 hour/day) were probably
in the Low Use group in the study by Agarwal and col-
leagues. (<2 hour/day) may explain why Fejes and colleagues
(Box 4-1) did not find a significant difference in overall
sperm motility—as opposed to rapid sperm motility—
associated with cell phone use. In this case, all three multi-
ple comparison procedures yield the same conclusions.

Note, however, that the critical values of Pare larger for
the Holm method than the Bonferroni method, and the
Holm-Sidak method are larger than for the Holm method,
demonstrating the progressively less conservative stan-
dard for the three methods. Because of the improved
power while controlling the overall false-positive error
rate for the family of comparisons at the desired level, we
recommend the Holm-Sidak ¢ test over the Bonferroni ¢
test for multiple comparisons following a positive result in
analysis of variance.

B MULTIPLE COMPARISONS AGAINST
A SINGLE CONTROL

In addition to all pairwise comparisons, the need some-
times arises to compare the values of multiple treatment
groups to a single control group. One alternative would be

to use Bonferroni, Holm, or Holm-Sidak ¢ tests to do all
pairwise comparisons, then only consider the ones that
involve the control group. The problem with this approach
is that it requires many more comparisons than are actu-
ally necessary, with the result that each individual com-
parison is done much more conservatively than is
necessary based on the actual number of comparisons of
interest. We can use these methods just as before for mul-
tiple comparisons against a single control group by reduc-
ing the number of comparisons, k, accordingly. As with all
pairwise multiple comparisons, use these tests after find-
ing significant differences among all the groups with an
analysis of variance.

For example, if we only wanted to compare the low,
medium, and high cell phone users against the Control
nonusers in the example we just discussed, we would only
have to account for k = 3 comparisons (Table 4-5), as
opposed to the 6 we had to allow for when doing all pair-
wise comparisons (Box 4-1). We compute the values of ¢
and the associated P values, just as before. The critical val-
ues of P_; needed to reject the null hypothesis of no dif-
ference, however, are computed based on the smaller
number of comparisons, k, so are larger than when doing
all pairwise comparisons with the same family error rate
(compare the values of P_, for all three multiple compar-
ison tests in Box 4-1 and Table 4-5). All three multiple
comparison procedures show that the High and Medium,
but not the Low users have significantly different levels of
sperm motility than the Control nonusers. No staterment
can be made about the comparison of low, medium, and
high users against each other.

B THE MEANING OF P

Understanding what P means requires understanding the
logic of statistical hypothesis testing. For example, sup-
pose an investigator wants to test whether or not a drug
alters body temperature. The obvious experiment is to
select two similar groups of people, administer a placebo
to one and the drug to the other, measure body tempera-
ture in both groups, then compute the mean and standard
deviation of the temperatures measured in each group.
The mean responses of the two groups will probably be
different, regardless of whether the drug has an effect or
not for the same reason that different random samples
drawn from the same population yield different estimates
for the mean. Therefore, the question becomes: Is the
observed difference in mean temperature of the two
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BOX 4-2 - All Pairwise Multiple Comparisons for Effects of Cell Phone Use on Human Sperm Motility

To test all pairwise comparisons for the data in Table 3-2, we first compute the t test statistics for all the six com-
parisons using the within-groups variance estimate, sfm =119.3%2 and associated degrees of freedom, v, = 156,
from the analysis of variance we completed in Chapter 3. Comparing the low user (<2 h/d) with control (no cell
phone use) yields

Xlow - Ycontrol 65 - 68
tlow vs. control > 5 = 1193 1193 =-1.228
Suit + Suit \/ b N
n n 40 40
low control

Likewise, comparing the high user (>4 h/d) and medium user (2 to 4 h/d) yields,

. _ Xrigh — Xmedium _ 45-55 = —3.685

high vs. medium > >
szit + swit \/@ 4= 119.3

40 40

We compute the t values for the four other comparisons, similarly, then list all the comparisons in declining order
of magnitude of the associated t values (without regard to sign), as listed in the second column of the table below.

Pairwise Comparisons for Human Cell Phone Use (c.; = .05)

Bonferroni Holm Holm-Sidak
Pcrit Pcrit Pcrit

Comparison t P Jj o/k  P<Py? ok-j+1) P<P,? 1-@A-oa)’"*YP<P,?
High vs. Control 9.417 <.001 1 .0083 Yes .0083 Yes .0085 Yes
Medium vs. Low 8.189 <.001 2 .0083 Yes .0100 Yes .0102 Yes
Medium vs. Control 5.732 <.001 3 .0083 Yes .0125 Yes .0127 Yes
Medium vs. Low 4504 <.0014 4 .0083 Yes .0167 Yes .0170 Yes
High vs. Medium 3.685 <.001 5 .0083 Yes .0250 Yes .0253 Yes
Low vs. Control 1.228 >.10 6 .0083 No .0050 No .0500 No

v, = 156.

Next, look up the P values for each t in Table 4-1 using the denominator degrees of freedom from the analysis
of variance (third column in the table above) and compare these P values with the critical value, P_.., for the mul-
tiple comparison procedure.

For the Bonferroni corrected t test, this critical value is just the family error rate, o = .05, divided by the total
number of comparisons, k = 6, for all the comparisons (the fifth column in the table).

For the Holm corrected t test, we begin with a critical value of P as small as for the Bonfrerroni t test, but make
each critical value less conservative (larger) as the differences in the sample means (quantified using the cor-
responding t) get smaller, until for the last comparison, we are using an unadjusted value of P, equal to the family
error rate, in this case .05. For example, for the second comparison, j = 2, and P, = og/(k—j+1)=.05/(6 -2 + 1) =
.05/5 =.0100.

For the Holm-Sidak corrected t test, as with the Holm corrected t test, the first comparison is done with the full
Bonferroni correction, and we make the critical values less conservative with each subsequent comparison, we make
the critical value of P larger with each subsequent comparison, but use the formula that better models the actual
accumulation of false positive risks. In this case, for the second comparison, when j =2, P, =1 — (1 — o)/ 7"V =
1-(1-.05)Y#Y =1 _ 95"°=1 _ 952 =1 —.9898 = .0102.

To determine whether each pair of means differs significantly from each other, compare the P value associated with the
t test with the corresponding P,;; adjusted for the multiple comparison test. In this case, the P values are smaller than P,
all the pairs of means except the Control and Low Use groups for all three multiple comparison procedures. Thus, we
conclude that sperm motility is different between all the sample groups, except for the Control and Low Use groups, which
are not detectably different.

crit?
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B TABLE 4-5

ns Against a Single Control Group for Human Sperm Motility and Cell Phone

Bonferroni Holm Holm-Sidak
Pcrit Pcrit Pcrit i
Comparison t P j ayk P<P,? a/k-j+1) P<P,? 1-1-o)"*7* P<pP_ 2
High vs. Control 9.417 <.001 1 .0167 Yes .0167 Yes .0167 Yes
Medium vs. Control 5.732 <.001 2 .0167 Yes .0250 Yes .0253 Yes
Low vs. Control 1.288 >.10 3 .0167 No .0050 No .0500 No

vy = 156.

groups likely to be due to random variation associated
with the allocation of individuals to the two experimental
groups or due to the drug?

To answer this question, statisticians first quantify the
observed difference between the two samples with a single
number, called a test statistic, such as F or t. These statis-
tics, like most test statistics, have the property that the
greater the difference between the samples, the greater
their value. If the drug has no effect, the test statistic will
be a small number. But what is “small”?

To find the boundary between “small” and “big” values
of the test statistic, statisticians assume that the drug does
not affect temperature (the null hypothesis). If this assump-
tion is correct the two groups of people are simply ran-
dom samples from a single population, all of whom
received a placebo (because the drug is, in effect, a pla-
cebo). Now, in theory, the statistician repeats the experi-
ment using all possible samples of people and computes
the test statistic for each hypothetical experiment. Just as
random variation produced different values for means of
different samples, this procedure will yield a range of val-
ues for the test statistic. Most of these values will be rela-
tively small, but sheer bad luck requires that there be a few
samples that are not representative of the entire popula-
tion. These samples will yield relatively large values of the
test statistic even if the drug had no effect. This exercise
produces only a few of the possible values of the test sta-
tistic, say 5% of them, above some cutoff point. The test
statistic is “big” if it is larger than this cutoff point.

Having determined this cutoff point, we execute an
experiment on a drug with unknown properties and com-
pute the test statistic. It is “big.” Therefore, we conclude
that there is less than a 5% chance of observing data which

led to the computed value of the test statistic on the assump-
tion that the drug has had no effect was true. Traditionally,
if the chances of observing the computed test statistic
when the intervention has no effect are below 5%, one
rejects the working assumption that the drug has no effect
and asserts that the drug does have an effect. There is, of
course, a chance that this assertion is wrong: about 5%.
This 5% is known as the P value or significance level.
Precisely,

The P value is the probability of obtaining a value of
the test statistic as large as or larger than the one com-
puted from the data when in reality there is no differ-
ence between the different treatments.

As a result of this logic, if we are willing to assert a dif-
ference when P < .05, we are tacitly agreeing to accept the
fact that, over the long run, we expect 1 out of every 20
assertions of a difference to be wrong.

Statistical versus Real (Clinical) Thinking

As we have said several times, statistical hypothesis testing
as presented in this book and generally practiced is an
argument by contradiction. One begins with the null
hypothesis of no difference and estimates the probability
of obtaining the observed data assuming that the null
hypothesis is true. If that probability is sufficiently low, we
reject the null hypothesis. Even though this formalism is
widely used, the simple fact is that investigators rarely
begin a study actually expecting the null hypothesis to be
true. Quite the contrary, generally one expects that some
alternative hypothesis— that the treatment or observa-
tional factor being studied — does have an effect.
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Indeed, in terms of practical thinking, if the results of
the study reject the null hypothesis of no effect, it actually
reinforces the “real” hypothesis that there was an effect,
which is what motivated the study in the first place. If, on
the other hand, you fail to reject the null hypothesis of no
effect, that fact is evidence that the “real” hypothesis is not
correct. This use of information in an incremental way,
which involves beginning with some prior expectation of
what the underlying relationship between the treatment
(or observational factor) and the outcome is, then modify-
ing that belief on the basis of the experimental data is how
scientific and clinical decision making is actually done.

There is a branch of statistical reasoning called Bayesian
decision making, based on simple probability calculations
known as Bayes’ rule,* that allows you to use the results of
an experiment to modify, in a quantitative way, your prior
expectations of the relationship you are studying.

Bayes’ rule allows you to begin with a prior distribution
of possible outcomes (each with a probability attached to
it, much like the F and t sampling distributions we have
already discussed) then mathematically modify that dis-
tribution based on the information obtained in your
study to obtain your posterior distribution of probabilities
associated with different possible outcomes. Indeed, at a
qualitative level, that is the process that people use to inte-
grate new information in making decisions—be they sci-
entific, clinical, or personal.

Many statisticians,” especially those concerned with
clinical decision making, have argued that the simple null
hypothesis approach to statistical decision making both
oversimplifies the process of using data to make clinical

*Bayes’ Rule states:

Posteriorodds | _ ( Prior odds
of null hypotheis |~ \ of null hypothesis
Pr(data, given the null hypothesis)

Pr(data, given the alternative hypothesis)

where Pr means the probability of the stated situation. For a detailed
discussion of the application of this formulation of Bayes’ Rule to bio-
medical data, see Goodman SN. Toward evidence-based medical statis-
tics. 2: the Bayes factor. Ann Intern Med. 1999;130:1005-1013.

For a discussion of the Bayesian approach, with a comparison to the
frequentist approach used in this book and several clinical examples, see
Browner WS, Newman TB. Are all significant Pvalues created equal? The
analogy between diagnostic tests and clinical research. JAMA.
1987;257:2459-2463; Goodman SN. Toward evidence-based medical sta-
tistics. 2: the Bayes factor. Ann Intern Med. 1999;130:1005-1013; Dia-
mond GA, Kaul S. Baysian approaches to the analysis and interpretation
of clinical megatrends. ] Am Coll Cardiol. 2004;43:1929-1939.

and scientific decisions and leads to being overly reluctant
to conclude that the treatment actually had an effect.

There are two reasons for this view. First, traditional
statistical hypothesis testing based on the null hypothesis
of no effect is equivalent to saying that at the outset of the
study you do not believe that there is any evidence to sup-
port the possibility that the treatment actually had an
effect, which is, as discussed above, rarely the case. Second,
each hypothesis is tested without taking in to account any-
thing else you know about the likely effects of the inter-
vention. These two factors combine to lead you to
implicitly underestimate the prior probability that the
treatment has an effect, which makes it harder to conclude
that there is an effect than the data may warrant.

They are correct. Why, then, do people persist in using
the classic approach to statistical decision making
described in this book?

The primary reason is the difficulty in obtaining good
estimates of the prior probabilities of the possible out-
comes before the experiment was conducted. Indeed,
despite repeated entreaties to use Baysian decision making
by its enthusiasts, they can point to few examples where it
has been used in routine clinical or scientific research
because of the difficulties in obtaining meaningful prior
probability distributions.

Nevertheless, it is worth keeping in mind this process
and recognizing that the results of classic statistical
hypothesis testing— embodied as the P value—need to
be integrated into the larger collection of knowledge that
creators and consumers of scientific and clinical results
possess in order to further refine their understanding of
the problems at hand. From this perspective, the Pvalue is
not the arbiter of truth but rather an assistant in making
evolving judgments as to what the truth is.

Why P < .05?

The convention of considering a difference “statistically
significant” when P < .05 is widely accepted. In fact, it
came from an arbitrary decision by one person, Ronald A.
Fisher, who invented much of modern parametric statis-
tics (including the F statistic, which is named for him). In
1926, Fisher published a paper’ describing how to assess

"Fisher RA. The arrangement of field experiments. ] Min Agr.
1926533:503—513. For a discussion of this paper in its historical context,
including evidence that the logic of hypothesis testing dates back to Blaise
Pascal and Pierre Fermat, in 1654, see Cowles M, Davis C. On the origins
of the .05 level of statistical significance. Am Psychol. 1982;37:533-558.



THE SPECIAL CASE OF TWO GROUPS: THE t TEST 71

whether adding manure to a field would increase crop
yields, which introduced the idea of statistical significance
and established the 5% standard. He said:

To an acre of ground the manure is applied; a sec-
ond acre, sown with similar seed and treated in all
other ways like the first, receives none of the
manure. When the produce is weighed, it is found
that the acre which received the manure has
yielded a crop larger indeed by, say, 10 percent.
The manure has scored a success, but the confi-
dence with which such a result should be received
by the purchasing public depends wholly on the
manner in which the experiment was carried out.

First, if the experimenter could say that in twenty
years of experience with uniform treatment the dif-
ference in favour of the acre treated with manure
had never before touched 10%, the evidence would
have reached a point which may be called the verge
of significance; for it is convenient to draw the line
at about the level at which we can say: “Either there
is something in the treatment, or a coincidence has
occurred such as does not occur more than one in
twenty trials.” This level, which we may call the 5%
point, would be indicated, though very roughly, by
the greatest chance deviation observed in twenty
successive trials. To locate the 5% point with any
accuracy we should need about 500 years’ experi-
ence, for we could then, supposing no progressive
changes in fertility were in progress, count out the
25 largest deviations and draw the line between the
25th and 26th largest deviation. If the difference
between the two acres in our experimental year
exceeded this value, we should have reasonable
grounds for calling this value significant.

If one in 20 does not seem high enough odds, we
may, if we prefer it, draw the line at 1 in 50 (the 2%
point) or 1 in 100 (the 1% point.) Personally, the
writer prefers to set a low standard of significance at
the 5% point, and ignore entirely all results which
fails to reach this level.

Although P < .05 is widely accepted, and you will cer-
tainly not generate controversy if you use it, a more sen-
sible approach is to consider the P value in making
decisions about how to interpret your results without
slavishly considering 5% a rigid criterion for “truth.”

It is commonly believed that the P value is the proba-
bility of making a mistake. There are obviously two ways

an investigator can reach a mistaken conclusion based on
the data, reporting that the treatment had an effect when
in reality it did not or reporting that the treatment did not
have an effect when in reality it did. As noted above, the P
value only quantifies the probability of making the first
kind of error (called a Type I or ¢ error), that of errone-
ously concluding that the treatment had an effect when in
reality it did not. It gives no information about the prob-
ability of making the second kind of error (called a Type
I or Berror), that of concluding that the treatment had no
effect when in reality it did. Chapter 6 discusses how to
estimate the probability of making Type II errors.

B PROBLEMS

4-1 In the randomized controlled trial of the use of a
cannabis-based medicinal to treat pain associated with dia-
betic neuropathy discussed in Chapter 3, the 29 people
randomized to the control group had a mean age of 54.4
years old and the 24 people randomized to the treatment
group had a mean age of 58.2 years old, with standard
deviations of 11.6 and 8.8 years. Was there a detectable dif-
ference in the ages of these two groups?

4-2 Hypothermia is problem for extremely low birth
weight infants. One idea to help these infants maintain
body temperature is to wrap them in polyethylene bags in
the delivery room and while they are being transferred to
the neonatal intensive care unit. Patrick Carroll and col-
leagues* reviewed medical records and located 70 infants
who were kept warm with polyethylene bags and 70 infants
who were kept warm with traditional methods. The skin
temperature for the infants who were kept warm with the
polyethylene bags was 36°C and for the infants kept warm
using traditional techniques was 35°C. The standard devi-
ations for both groups were 1°C. Is there a difference in
skin temperature between these two treatment groups?

4-3 In addition to the stair climbing test discussed in
Chapter 3, Mark Roig and colleagues also conducted 6
minute walk tests in which they measured how far people
could walk (in meters) in 6 minutes to compare the ability
of normal people and people with chronic obstructive pul-
monary disease (COPD) to exercise. Based on the data in
Table 4-6 is there a detectable difference in performance?

*Carroll P, Nankervis CA, Giannone PJ, Cordero L. Use of polyethylene
bags in extremely low birth weight infant resuscitation for the prevention
of hypothermia. ] Reprod Med. 2010;55: 9—13.
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B TABLE 4-6. Distance Walked in 6 Minutes (meters)

Control COPD |
619 283 ,
512 402 '
523 407
586 402
436 340 '
515 445 [
562 548 '
544 344 ’
531 358
534 419
572 393
541 469 E
551 393
492 420
698 463
700 438
571 428 ,
502 364 [
557 336 5
482 256 1
627 368 ,

4-4 To assess whether providing in- person counseling
would increase the use of advance directives in homeless
people, John Song and colleagues* recruited 262 volunteers
at emergency night shelters and other programs serving
homeless people and randomly allocated them to receive
in-person counseling or just be provided written materials.
The mean age for the 145 people randomized to receive
in-person counseling was 43.1 years and for the 117 people
randomized to receive written materials was 43.3 years. The
standard errors of the mean for the two groups were .87 and
.96, respectively. Is there a difference in the ages of the two
study groups?

*Song J. Effect of an end-of life planning intervention on the completion of
advance directives in homeless persons. Ann Intern Med. 2010;153:76-84.

4-5 Rework Problems 3-1, 3-3, and 3-5 using the f test.
What is the relationship between the value of t computed
here and the value of F computed for these data in
Chapter 3?

4-6 Problem 3-2 presented the data that White and Froeb
collected on the lung function of nonsmokers working in
smoke-free environments, nonsmokers working in smoky
environments, and smokers of various intensity. Analysis
of variance revealed that these data were inconsistent with
the hypothesis that the lung function was the same in all
these groups. Isolate the various subgroups with similar
lung function. What does this result mean in terms of the
original question they posed: Does chronic exposure to
other people’s smoke affect the health of healthy adult
nonsmokers?

4-7 Directly test the limited hypothesis that exposure to
other people’s smoke affects the health of healthy non-
smokers by comparing each group of involuntary smokers
and active smokers with the nonsmokers working in a
clean environment as the control group. Use the data from
Problem 3-2.

4-8 Problem 3-4 led to the conclusion that there were dif-
ferences in sperm viability among men with different lev-
els of cell phone use. What are the detectable subgroups in
this response? Use a Holm-Sidak ¢ test.

4-9 What conclusions would you draw if you were only
interested in whether sperm viability among men with
different levels of cell phone use were significantly differ-
ent from men who did not use cell phones at all?

4-10 In Problem 3-6 you determined there was a differ-
ence in burnout among staffs in different patient care
units. Isolate these differences and discuss them.

4-11 In a test of significance, the P value of the test statis-
tic is .063. Are the data statistically significant at

(a) both ¢=.05and o= .01 levels?

(b) a=.051level but not at ov=.01 level?
(c) a=.01level but not at or= .05 level?
(d) neither ox= .05 nor ax= .01 levels?



How to Analyze Rates

and Proportions

The statistical procedures developed in Chapters 2 to 4 are
appropriate for analyzing the results of experiments in
which the variable of interest is measured on an interval
scale, such as blood pressure, urine production, or length
of hospital stay. Much of the information physicians,
nurses, other health professionals, and medical scientists
use cannot be measured on interval scales. For example,
an individual may be male or female, dead or alive, or
Caucasian, African American, Hispanic, or Asian. These
variables are measured on nominal scales, in which there
is no arithmetic relationship between the different classi-
fications. We now develop the statistical tools necessary to
describe and analyze such information.

It is easy to describe things measured on a nominal
scale: simply count the number of patients or experimen-
tal subjects with each condition and (perhaps) compute
the corresponding percentages.

For example, John Song and colleagues* wanted to
study whether or not providing homeless people with per-
sonal counseling on end-of-life care and advanced direc-
tives would lead more of them to complete such directives.
(This question had been studied among insured general
adult populations, but not among the homeless, who have
more health problems and less access to stable health care
relationships.) To investigate this question, they recruited

*Song J, Ratner ER, Wall HM, Bartels DM, Ulvestad N, Petroskas D, West
M, Weber-Main AM, Grengs L, Gelberg L. Effect of an end-of life plan-
ning intervention on the completion of advance directives in homeless
persons. Ann Intern Med. 2010;153:76—84.

CHAPTER

people at emergency night shelters, 24-hour shelters, a day
program and treatment programs. They conducted an
experiment in which volunteers were randomly assigned
to either receive written material on advance directives or
invited to attend a 1-hour in-person counseling session on
advance directives. The outcome of the study was whether
the people returned a completed advance directive within
3 months. Among the 262 people who participated in the
study 37.9% of the people who received the in-person
counseling returned the advanced directives within
3 months, compared with 12.8% of the people who were
just given written instructions. Is this difference likely to
be a real effect of the counseling or simply a reflection of
random sampling variation?

To answer this and other questions about nominal
data, we must first invent a way to estimate the precision
with which percentages based on limited samples approx-
imate the true rates that would be observed if we could
examine the entire population, in this case, all homeless
people. We will use these estimates to construct statistical
procedures to test hypotheses.

B BACK TO MARS

Before we can quantify the certainty of our descriptions of
a population on the basis of a limited sample, we need to
know how to describe the population itself. Since we have
already visited Mars and met all 200 Martians (in Chap-
ter 2), we will continue to use them to develop ways to
describe populations. In addition to measuring the Mar-
tians’ heights, we noted that 50 of them were left-footed

73



74 Chapter 5

Left-footed

FIGURE 5-1. Of the 200 Martians 50 are left-footed, and
the remaining 150 are right-footed. Therefore, if we select
one Martian at random from this population, there is a
P = 90/200 = 0.25 = 25% chance it will be left-footed.

Right-footed

and the remaining 150 were right-footed. Figure 5-1
shows the entire population of Mars divided according to
footedness. The first way in which we can describe this
population is by giving the proportion p of Martians who
are in each class. In this case, p,; = 50/200 = 0.25 and p;;,
= 150/250 = 0.75. Since there are only two possible classes,
notice that p,;, = 1 — pis. Thus, whenever there are only
two possible classes and they are mutually exclusive, we can
completely describe the division in the population with the
single parameter p, the proportion of members with one
of the attributes. The proportion of the population with
the other attribute is always 1 — p.

Note that p also is the probability of drawing a left-
footed Martian if one selects one member of the popula-
tion at random.

Thus p plays a role exactly analogous to that played by
the population mean u in Chapter 2. To see why, suppose
we associate the value X =1 with each left-footed Martian
and a value of X = 0 with each right-footed Martian. The
mean value of X for the population is

XX 1+1+--+1404+0+---+0

N 200
50(1)+150(0) 50

_20M+150000_ 50 _ s
200 200

which is pg.

This idea can be generalized quite easily using a few
equations. Suppose M members of a population of N
individuals have some attribute and the remaining N— M
members of the population do not. Associate a value of
X =1 with the population members having the attribute

and a value of X = 0 with the others. The mean of the
resulting collection of numbers is

XX _M@O+(N-M)(0) M _
N N N

the proportion of the population having the attribute.

Since we can compute a mean in this manner, why not
compute a standard deviation in order to describe vari-
ability in the population? Even though there are only two
possibilities, X = 1, and X = 0, the amount of variability
will differ, depending on the value of p. Figure 5-2 shows
three more populations of 200 individuals each. In Figure
5-2A only 10 of the individuals are left-footed; it exhibits
less variability than the population shown in Figure 5-1.
Figure 5-2B shows the extreme case in which half the
members of the population fall into each of the two
classes; the variability is greatest. Figure 5-2C shows the
other extreme; all the members fall into one of the two
classes, and there is no variability at all.

To quantify this subjective impression, we compute the
standard deviation of the 1s and 0Os associated with each
member of the population when we computed the mean.
By definition, the population standard deviation is

oo | 2X-p)
N

X =1 for M members of the population and 0 for the
remaining N— M members, and u = p; therefore

(1=p)" +(1=p)*+++(1-p)’
+(0-p)* +(0—p)*+--+(0—p)’
N

_ [MA-p’+WN-M)p* M, (M),
[ )

But since M/N = p is the proportion of population
members with the attribute,

<’=Jp(l—p)2+(1—p)p2 =\/[p(1—p)+p2](1—p)

which simplifies to

o=yp-p)

This equation for the population standard deviation
produces quantitative results that agree with the qualita-
tive impressions we developed from Figures 5-1 and 5-2.
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FIGURE 5-2. This figure illustrates three different
populations, each containing 200 members but with different
proportions of left-footed members. The standard deviation,
o = /p(1 - p)quantifies the variability in the population.

(A) When most of the members fall in one class, o is a small
value, 0.2, indicating relatively little variability. (B) In contrast,
if half the members fall into each class, o reaches its
maximum value of .5, indicating the maximum possible
variability. (C) At the other extreme, if all members fall into
the same class, there is no variability at all and ¢ = 0.

As Figure 5-3 shows, 0 =0 when p =0 or p =1, that is,
when all members of the population either do or do not
have the attribute, and s is maximized when p=.5, that is,
when any given member of the population is as likely to
have the attribute as not.

Since o depends only on p, it really does not contain
any additional information (in contrast to the mean and
standard deviation of a normally distributed variable,
where 1 and o provide two independent pieces of infor-
mation). It will be most useful in computing a standard
error associated with estimates of p based on samples
drawn at random from populations such as those shown
in Figures 5-1 or 5-2.

B ESTIMATING PROPORTIONS
FROM SAMPLES

Of course, if we could observe all members of a popula-
tion, there would not be any statistical question. In fact, all
we ever see is a limited, hopefully representative, sample
drawn from that population. How accurately does
the proportion of members of a sample with an attribute
reflect the proportion of individuals in the population
with that attribute? To answer this question, we do a sam-
pling experiment, just as we did in Chapter 2 when we
asked how well the sample mean estimated the population
mean.

Suppose we select 10 Martians at random from the
entire population of 200 Martians. Figure 5-4A shows
which Martians were drawn; Figure 5-4B shows all the
information the investigators who drew the sample would
have. Half the Martians in the sample are left-footed and
half are right-footed. Given only this information, one
would probably report that the proportion of left-footed
Martians is 0.5%, or 50%.

Of course, there is nothing special about this sample,
and one of the four other random samples shown in
Figure 5-5 could just as well have been drawn, in which
case the investigator would have reported that the propor-
tion of left-footed Martians was 30%, 30%, 10%, or 20%,
depending on which random sample happened to be
drawn. In each case, we have computed an estimate of the
population proportion p based on a sample. Denote this
estimate p. Like the sample mean, the possible values of p
depend on both the nature of the underlying population
and the specific sample that is drawn. Figure 5-6 shows
the five values of p computed from the specific samples in
Figures 5-4 and 5-5 together with the results of drawing
another 20 random samples of 10 Martians each. Now we
change our focus from the population of Martians to the
population of all values of p computed from random
samples of 10 Martians each. There are more than 10"
such samples with their corresponding estimates p of the
value of p for the population of Martians.
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Vp(1-p)
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FIGURE 5-3. The relationship between
the standard deviation of a population
divided into two categories varies with p,
the proportion of members in one of the
categories. There is no variation if all
members are in one category or the other
(so 0=0when p =0 or 1) and maximum

The mean estimate of p for the 25 samples of 10 Mar-
tians each shown in Figure 5-6 is 30%, which is remark-
ably close to the true proportion of left-footed Martians
in the population (25% or 0.25). There is some variation
in the estimates. To quantify the variability in the possible
values of p , we compute the standard deviation of values
of p computed from random samples of 10 Martians each.
In this case, it is about 14% or 0.14. This number describes

p =50/200 = 0.25

Left-footed Right-footed

p=5/10=0.50

Left-footed Right-footed

FIGURE 5-4. Panel A shows one random sample of 10
Martians selected from the population in Figure 5-1; panel B
shows what the investigator would see. Since this sample
included five left-footed Martians and five right-footed
Martians, the investigator would estimate the proportion of
left-footed Martians to be f, = 5/10 = .5, where the
circumflex denotes an estimate.

variability when a given member is
equally likely to fall in one class or the
other (o= 0.5 when p = 0.5).

the variability in the population of all possible values of
the proportion of left-footed Martians computed from
random samples of 10 Martians each.

Does this sound familiar? It should. It is just like the
standard error of the mean. Therefore, we define the stan-
dard error of the proportion to be the standard deviation of
the population of all possible values of the proportion
computed from samples of a given size. Just as with the
standard error of the mean

Gﬁ:ﬁ

in which . is the standard error of the proportion, o'is
the standard deviation of the population from which the
sample was drawn, and # is the sample size. Since

o=\p(1-p)

p(-p)

n

o I

We estimate the standard error from a sample by

replacing the true value of p in this equation with our
estimate p obtained from the random sample. Thus,

_ |pA-p)

3

The standard error is a very useful way to describe the
uncertainty in the estimate of the proportion of a popu-
lation with a given attribute because the central-limit
theorem (Chapter 2) also leads to the conclusion that the
distribution of p is approximately normal, with mean p
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FIGURE 5-5. Four more random samples of
10 Martians each, together with the
sample as it would appear to the
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investigator. Depending which sample Left-footed
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Martians to be 30%, 30%, 10%, or 20%.

and standard deviation 0 for large enough sample
sizes. On the other hand, this approximation fails for val-
ues of p near 0 or 1 or when the sample size # is small.
When can you use the normal distribution? Statisticians

e
e
e
e
eo0o
000
eo0 00
0200
eo0oce0eo0
0 02 04 06 08 10
b

FIGURE 5-6. There will be a distribution of estimates of the
proportion of left-footed Martians p, ., depending on which
random sample the investigator happens to draw. This
figure shows the five specific random samples drawn in
Figures 5-4 and 5-5 together with 20 more random samples
of 10 Martians each. The mean of the 25 estimates of p
and the standard deviation of these estimates are also
shown. The standard deviation of this distribution is the
standard error of the estimate of the proportion g; it
quantifies the precision with which p estimates p.

have shown that it is adequate when np and n(1- p) both
exceed about 5.* Recall that about 95% of all members
of a normally distributed population fall within 2 stan-
dard deviations of the mean. When the distribution of p

approximates the normal distribution, we can assert,
with about 95% confidence, that the true proportion of
population members with the attribute of interest p lies
within 2s, of p.

These results provide a framework within which to
consider the question we posed earlier in this chapter
regarding whether in-person counseling led to higher lev-
els of completing end-of-life advance directives among
homeless people. Of the 145 people who received in-per-
son counseling 37.9% completed the advance directives

*When the sample size is too small to use the normal approximation, you
need to solve the problem exactly using the binomial distribution (or use
a table of exact values). For a discussion of the binomial distribution, see
Zar JH. Dichotomous variables. Biostatistical Analysis, 5th ed. Upper
Saddle River, NJ: Prentice Hall; 2010:chap 24.
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and 12.8% of the 117 people who just received written
instructions did so. The standard errors of these propor-

tions are
.379(1=379
Ss =,/¥=.040=4.0%
Pcounsel 145

for the people who received counseling and

.128(1-.128
Sy =, (—)=.031=3.1%
Ppaper 117

for written instructions. Given that there was a 25.1% dif-
ference in the rate that people returned the advance direc-
tive, it seems likely that the counseling had an effect
beyond just random sampling variation.

Before moving on, we should pause to list explicitly the
assumptions that underlie this approach. We have been
analyzing what statisticians call independent Bernoulli tri-
als, in which

* Each individual trial has two mutually exclusive out-
comes.

o The probability p of a given outcome remains constant.

o All the trials are independent.

In terms of a population, we can phrase these assump-
tions as follows:

* Each member of the population belongs to one of two
classes.

* Each member of the sample is selected independently of all
other members.

B HYPOTHESIS TESTS FOR PROPORTIONS

In Chapter 4, the sample mean and standard error of the
mean provided the basis for constructing the t test to
quantify how compatible observations were with the null
hypothesis. We defined the ¢ statistic as

Difference of sample means

~ Standard error of difference of sample means

The role of p is analogous to that of the sample mean
in Chapters 2 and 4, and we have also derived an expres-
sion for the standard error of p. We now use the observed
proportion of individuals with a given attribute and its
standard error to construct a test statistic analogous to ¢ to
test the hypothesis that the two samples were drawn from

populations containing the same proportion of individu-
als with a given attribute.
The test statistic analogous to ¢ is

_ Difference of sample proportions

Standard error of difference
of sample proportions

Let p, and p, be the observed proportions of individu-
als with the attribute of interest in the two samples. The
standard error is the standard deviation of the population
of all possible values of p associated with samples of a
given size, and since variances of differences add, the stan-
dard error of the difference in proportions is

|2 2
Spi—py = $ﬁ1+5ﬁ2

Therefore

A A

ﬁl_ﬁ2 — PP

Shi-py 5 s

z=

If n, and n, are the sizes of the two samples,

5. = ,pl(l_pl) and 5. = Pz(l_pz)
h n, P2 1,

then
131_132
Jib, (=i ]+ (p, (1= p)/m,]

z=

is our test statistic.

z replaces t because this ratio is approximately normally
distributed for large enough sample sizes,* and it is custom-
ary to denote a normally distributed variable with the letter z.

Just as it was possible to improve the sensitivity of the
t test by pooling the observations in the two sample
groups to estimate the population variance, it is possible
to increase the sensitivity of the z test for proportions by
pooling the information from the two samples to obtain a
single estimate of the population standard deviation s.
Specifically, if the null hypothesis that the two samples

*The criterion for a large sample is the same as in the last section, namely
that np and n (1- p) both exceed about 5 for both samples. When this is
not the case, one should use the Fisher exact test discussed later in this
chapter.
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were drawn from the same population is true, p, =m,/n,
and p,=m,/n,, in which m, and m, are the number of
individuals in each sample with the attribute of interest,
are both estimates of the same population proportion p.
In this case, we could consider all the individuals drawn as a
single sample of size n, + n, containing a total of m, + m,
individuals with the attribute and use this single pooled
sample to estimate p:

mtm, np+np,

n1+n2 fll+1’12

in which case
s=4/p(1-p)

and we can estimate

s s 1 1
S, , = |—4+—= h l_A —
P1=p n, n, P( p)[l’ll nzj

Therefore, our test statistic, based on a pooled estimate
of the uncertainty in the population proportion, is

— 131_132
JP=p)A/n, +1/n,)

z

Like the ¢ statistic, z will have a range of possible values
depending on which random samples happen to be drawn
to compute p, and p,, even if both samples were drawn
from the same population. If zis sufficiently “big” we will
conclude that the data are inconsistent with this null
hypothesis and assert that there is a difference in the pro-
portions. This argument is exactly analogous to that used
to define the critical values of the ¢ for rejecting the
hypothesis of no difference. The only change is that in this
case we use the standard normal distribution (Fig. 2-5) to
define the cutoff values. In fact, the standard normal dis-
tribution and the ¢ distribution with an infinite number
of degrees of freedom are identical, so we can get the crit-
ical values for 5 or 1% confidence levels from the last line
in Table 4-1. This table shows that there is less than a 5%
chance of z being beyond —1.96 or +1.96 and less than a
1% chance of zbeing beyond —2.58 or +2.58 when, in fact,
the two samples were drawn from the same population.

The Yates Correction for Continuity

The standard normal distribution only approximates the
actual distribution of the z test statistic in a way that yields
Pvalues that are always smaller than they should be. Thus,

the results are biased toward concluding that the treat-
ment had an effect when the evidence does not support
such a conclusion. The mathematical reason for this prob-
lem has to do with the fact that the z test statistic can only
take on discrete values, whereas the theoretical standard
normal distribution is continuous. To obtain values of the
z test statistic which are more compatible with the theo-
retical standard normal distribution statisticians have
introduced the Yates correction (or continuity correction),
in which the expression for zis modified to become

Py =Py - 1(W/n +1/ny)
JP(=p)(Un, +1/n,)

This adjustment slightly reduces the value of z associ-
ated with the data and compensates for the mathematical
problem just described.

Effect of Counseling on End-of-Life
Planning in Homeless People

We can now formally test the null hypothesis that counsel-
ing and just giving homeless people written instructions
on end-of-life care leads to the same rate of completing
advance directives. (Note that we can say “leads” or “causes”
rather than just “is associated with” because this is a ran-
domized experiment, not an observational study.) Since 55
(37.9% of 145) people who received in-person counseling
completed the advance directives and 15 (12.8% of 117)
people who just received written instructions did so,

55+15

P57

Since np for the two samples, .267 - 145=38.7 and .267 - 117
= 31.2 both exceed 5, we can use the test described in the
last section.* Our z test statistic is therefore

pcounsel _ppaper

N n 1 1
p1-p) +—
ncounsel npaper

_ .379-.128 — 4,565

1 1
267(1-.267)] —+—
145 117

z=

*n(1— p)also exceeds 5 for both samples because p < .5,s0np <n(1-p).
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Including the Yates correction, it is

1 1 1
-— +
2\ n . n
counse paper

pcounsel - p aper
pap!

A A 1 1
p-p) +
M ounsel npaper
(1 1
|.379—.128|—2(145+117j
= =4.443

267(1—.267) -+
145 117

Note that the Yates correction reduced the value of the
z test statistic. (Since the sample sizes are reasonably large,
the effect was small.) The value of the z test static, 4.443,
exceeds 3.2905, the value that defines the most extreme 1%
of the normal distribution (from Table 4-1), so we reject
the null hypothesis of no difference and conclude that the
in-person counseling significantly increased the rate at
which homeless people returned the advance directives.

B ANOTHER APPROACH TO TESTING
NOMINAL DATA: ANALYSIS OF
CONTINGENCY TABLES

The methods we just developed based on the z statistic
are perfectly adequate for testing hypotheses when there
are only two possible attributes or outcomes of interest.
The z statistic plays a role analogous to the ¢ test for data
measured on an interval scale. There are many situa-
tions, however, where there are more than two samples
to be compared or more than two possible outcomes. To
do this, we need to develop a testing procedure, analo-
gous to analysis of variance, which is more flexible than
the z test just described. While the following approach
may seem quite different from the one we just used to

design the z test for proportions, it is essentially the
same.

To keep things simple, we begin with the problem we
just solved, assessing the effectiveness of in-person coun-
seling of homeless people to prepare advance directives. In
the last section we based the analysis on the proportion of
people in each of the two treatment groups (in-person
counseling or written materials). Now we change our
emphasis slightly and base the analysis on the number of
people in each group who did and did not file advance
directives. Since the procedure we will develop does not
require assuming anything about the nature of the param-
eters of the population from which the samples were
drawn, it is called a nonparametric method.

Table 5-1 presents the data from this experiment in
terms of the number of people in each treatment group
who did and did not file advance directives. This table is
called a 2 X 2 contingency table. Most of the people in the
study fall along the diagonal in this table, suggesting an
association between the experimental intervention and
whether or not the person filed and advance directive.
Table 5-2 shows what the experimental results might have
looked like if the experimental intervention had no effect on
the results, if the null hypothesis of no effect was true. It
also shows the total number of people who received each
intervention as well as the total who did and did not file
advance directives. (The sums of the rows and columns
are the same as in Table 5-1.) In Table 5-2, fewer people in
both intervention groups filed advance directives than did
not; the differences in the absolute numbers occur because
more people were randomized into the counseling group
than the written instructions group. In contrast to Table
5-1, there does not seem to be a relationship between the
intervention and whether people filed advance directives.

To understand why most people have this subjective
impression, let us examine where the numbers in Table
5-2 came from. Of all the 262 people in the study, 70, or

B TABLE 5-1. Advance Directives Filed in People Who Received In-Person Counseling or Written Instructions

Number of People

Intervention Filed Advance Directive

Did Not File Advance Directive

Total in Intervention Group

In-person counseling 55
Written instructions 15

Total 70

90 145
102 117
192 262
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B TABLE 5-2. Expected Advance Directives Filed if Intervention Had No Effect

Number of People

Intervention Filed Advance Directive

Did Not File Advance Directive

Total in Intervention Group

In-person counseling 38.74
Written instructions 31.26
Total 70.00

106.26 145
85.74 117
192.00 262

70/262 = 26.7%, filed advance directives and 192, or
192/262 =73.3%, did not. Now, let us assume that the null
hypothesis is true and that the intervention had no effect
on the likelihood that a person would file an advance
directive. In this case, we would expect 26.7% of the 145
people who received in-person counseling to file advance
directives (38.74 people) and 26.7% of the 117 people
who just received written materials (31.26) to file advance
directives. We would expect the remaining 73.3% of peo-
ple in each group to not have filed advance directives.*
(We compute the expected frequencies to two decimal
places to ensure accurate results in the computation of the
X’ test statistic below.) Thus, Table 5-2 shows how we
would expect the data to look if 145 people received in-
person counseling and 117 received written materials and
70 of them were destined to file advance directives regard-
less of which intervention they received. Compare Tables
5-1 and 5-2. Do they seem similar? Not really; the actual
pattern of observations seems quite different from what
we expected if the intervention had no effect.

The next step in designing a statistical procedure to test
the hypothesis that the pattern of observations is due to
random sampling rather than the intervention is to reduce
this subjective impression to a single number, a test statis-
tic, such as F, 1, or z, so that we can reject the null hypoth-
esis of no effect when this statistic is “big.”

Before constructing this test statistic, however, let us
consider another example. Hypothermia is a problem for
extremely low birth weight infants. To investigate whether
wrapping these infants in polyethylene bags in the delivery
room and while they are being transferred to the neonatal

*We could also have computed the estimated numbers by multiplying the
number of people who did or did not file advance directives times the
fraction of all the 262 people in the study, 145, or 145/262 = 55.3%, re-
ceived in-person counseling and 117, or 117/262 = 44.7%, received writ-
ten materials. The result would be the same.

intensive care unit affected survival, Patrick Carroll and
colleagues’ reviewed medical records and located 70
infants who were kept warm with polyethylene bags and 70
infants who were kept warm with traditional methods. In
an effort to avoid problems created by confounding vari-
ables in this observational study, they matched the infants
according to birth weight, gestational age, and gender.
They found that the infants wrapped in the polyethylene
bags had statistically significantly higher skin tempera-
tures, by an average of 1°C (see Prob. 4-2). The more
important question was whether or not there was a mor-
tality benefit.

Table 5-3 shows the results of this study, presented in
the same format as Table 5-1. Table 5-4 shows the expected
pattern of observations if the null hypothesis that the
warming treatment had no effect on mortality was true.
Out of the 140 infants, 124, or 124/140 = 88.6%, lived. If
the warming treatment had no effect on survival, we
would expect 88.6% of the 70 infants in each treatment
group, 62 to live and the remaining 8 in each group to die.
Comparing the observed mortality pattern in Table 5-3
with the expected pattern if the null hypothesis of no
effect was true shows little difference, suggesting that there
is no association between the kind of warming treatment
and mortality.

The Chi-Square Test Statistic

Now we are ready to design our test statistic. It should
describe, with a single number, how much the observed fre-
quencies in each cell in the table differ from the frequencies
we would expect if there is no relationship between the

“Carroll PD, Nanketvis CA, Giannone PJ, Cordero L. Use of polyethylene
bags in extremely low birth weight infant resuscitation for the prevention
of hyperthermia. ] Reprod Med. 2010;55:9-13.
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B TABLE 5-3. Mortality Associated With Extreme Low Birth Weight

Number of Infants

Warming Treatment Lived Died Total in Treatment Group
Polyethylene bag 63 7 70
Traditional 61 9 70

Total 124 16 140

treatments and the outcomes that define the rows and col-
umns of the table. In addition, it should allow for the fact
that if we expect a large number of people to fall in a given
cell, a difference of one person between the expected and
observed frequencies is less important than in cases where
we expect only a few people to fall in the cell.

We define the test statistic ¥ (the square of the Greek
letter chi) as

(Observed —expected number
of individuals in cell)’

x* =Sum of —— -
Expected number of individuals in cell

The sum is calculated by adding the results for all cells
in the contingency table. The equivalent mathematical
statement is

, < (0-E)
X —Z—E

in which O is the observed number of individuals (fre-
quency) in a given cell, E is the expected number of indi-
viduals (frequency) in that cell, and the sum is over all the
cells in the contingency table. Note that if the observed fre-
quencies are similar to the expected frequencies, ¥ will be
a small number and if the observed and expected frequen-
cies differ, )(2 will be a big number.

We can now use the information in Tables 5-1 and 5-2
to compute the y” statistic associated with the data on
counseling and filing advanced directives. Table 5-1 gives
the observed frequencies, and Table 5-2 gives the expected
frequencies. Thus,

5 (O-E)* (55-38.74)* (90—106.26)°
E 38.74 102.6
(15-31.26)> (102—85.74)
+ +
31.26 85.74

=20.854

To begin getting a feeling of whether or not 20.854 is
“big,” let us compute j for the data on warming tech-
nique for extreme low birth weight infants and mortal-
ity using the observed and expected counts in Tables 5-3
and 5-4:

2 2 2
2 Z(O_E) =(63—62) +(7—8)

E 62 8
61-62)* (9-8)°
+( ) +(9 8) =.282
62

which is pretty small, in agreement with our intuitive
impression that the observed and expected frequencies
are quite similar. (Of course, it is also in agreement
with our earlier analysis of the same data using the z

B TABLE 5-4. Expected Mortality if Treatment Had No Effect

Number of Infants

Warming Treatment Lived Died Total in Treatment Group
Polyethylene bag 62 8 70
Traditional 62 8 70

Total 124 16 140
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FIGURE 5-7. The X2 distribution with 1

degree of freedom. The shaded area denotes

the biggest 5% of possible values of the x2

test statistic when there is no relationship 0

between the treatments and observations. 0

statistic in the last section.) In fact, it is possible to
show that ¥ = Z* when there are only two samples and
two possible outcomes.

Like all test statistics, ¥ can take on a range of values
even when there is no relationship between the treatments
and outcomes because of the effects of random sampling.
Figure 5-7 shows the distribution of possible values for y°
computed from data in 2 X 2 contingency tables such as
those in Tables 5-1 or 5-3. It shows that when the hypoth-
esis of no relationship between the rows and columns of
the table is true, y> would be expected to exceed 3.841
only 5% of the time.

Because the observed value of y” for the counseling
study in Table 5-1, 20.854, exceeds this critical value of
3.841, we conclude that the data in Table 5-1 are unlikely
to occur if the null hypothesis that the counseling has no
effect on filing advance directives was true. We report that
counseling leads to higher rates of homeless people filing
advance directives (P < .05).

Like all the other procedures we have been using to test
hypotheses, however, when we reject the null hypothesis
of no association at the 5% level, we are implicitly willing
to accept the fact that, in the long run, about 1 reported
effect in 20 will be due to random variation rather than a
real treatment effect.

In contrast, the data in Table 5-3 seem very compatible
with the null hypothesis that the warming technique did

1.0 2.0 3.0 4.0 5.0

not have any effect on mortality in extremely low birth
weight infants.

Of course, neither of these studies proves that the in-
person counseling session did or did not have an effect on
homeless people filing advanced directives or use of poly-
ethylene bags had an effect on extreme low birth weight
infant mortality. What they show is that in the first exam-
ple the pattern of the observations is unlikely to arise if the
counseling session did not have an effect, whereas in the
second example the pattern of observations is likely to
arise if the polyethylene bag produced the same mortality
rate as conventional warming techniques.

As with all theoretical distributions of test statistics
used for testing hypotheses, there are assumptions built
into the use of . For the resulting theoretical distribution
to be reasonably accurate, the expected number of individu-
als in all the cells must be at least 5.* (This is essentially the
same as the restriction on the z test in the last section.)

Like most test statistics, the distribution of ¥ depends
on the number of treatments being compared. It also
depends on the number of possible outcomes. This
dependency is quantified in a degrees of freedom parameter

*When the data do not meet this requirement, one should use the Fisher
exact test, discussed later in this chapter.
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v equal to the number of rows in the table minus 1 times
the number of columns in the table minus 1

v=(r-1)(c-1)

where ris the number of rows and c is the number of col-
umns in the table. For the 2 X 2 tables we have been dealing
withso far,v=(2-1) (2-1)=1.

Table 5-5 presents a table of critical values for the y” test
statistic. The critical value that defines the .1% largest val-
ues of y* under the assumption that the null hypothesis is
true with v=1 degree of freedom is 10.828. The value asso-
ciated with our data on the effects of in-person counseling
on filing advance directives is 20.854, which exceeds this
value. Consequently, we can reject the null hypothesis of
no effect and conclude that in-person counseling increases
the likelihood that a homeless person will file an advance
directive (P < .001).

Likewise, the value of y* for the study of the value of
polyethylene wraps for extremely low birth weight infants
was only .282, which is smaller than the value of .455 which
defines the upper half of the y” distribution with 1 degree
of freedom, so we do not come close to rejecting the null
hypothesis that the polyethylene wrap is no better than tra-
dition warming methods in terms of infant mortality.

This study illustrates the importance of looking at out-
comes in clinical trials. The human body has tremendous
capacity to adapt not only to disease but also to medical
manipulation. Therefore, simply showing that some inter-
vention (such as a difference in warming technique)
changed a patient’s physiological state (by producing differ-
ent body temperature) does not mean that in the long run
it will make any difference in the clinical ouftcome. Focusing
on these intermediate variables, often called process vari-
ables, rather than the more important outcome variables
may lead you to think something made a clinical difference
when it did not. For example, in this study there was the
expected change in the process variable, skin temperature,
but not the outcome variable, mortality. If we had stopped
with the process variables we might have concluded that
the polyethylene wrap was superior to traditional warming
methods, even though the choice of warming method does
not appear to have affected the most important variable,
whether or not the infant survived.

Keep this distinction in mind when reading medical
journals and listening to proponents argue for their tests,
procedures, and therapies. It is much easier to show that
something affects process variables than the more important
outcome variables. In addition to being easier to produce a

demonstrable change in process variables than outcome
variables, process variables are generally easier to measure.
Observing outcomes may require following the patients for
some time and often present difficult subjective problems of
measurement, especially when one tries to measure “quality
of life” variables. Nevertheless, when assessing whether or
not some new procedure deserves to be adopted in an era of
limited medical resources, you should seek evidence that
something affects the patient’s outcome. The patient and the
patient’s family care about outcome, not process.

The Yates Correction for Continuity

As with the z test statistic discussed earlier in this chapter,
when analyzing 2 X 2 contingency tables (v= 1), the value
of x° computed using the formula above and the theo-
retical y° distribution leads to P values that are smaller
than they ought to be. Thus, the results are biased toward
concluding that the treatment had an effect when the evi-
dence does not support such a conclusion. The mathe-
matical reason for this problem has to do with the fact
that the theoretical y° distribution is continuous whereas
the set of all possible values that the ¥ test statistics can
take on is not. To obtain values of the test statistic that are
more compatible with the critical values computed from
the theoretical y* distribution when v=1, apply the Yates
correction (or continuity correction) to compute a cor-
rected y” test statistic according to

2 O-E|-Y4)
p =Z(I EI %)

This correction slightly reduces the value of x” asso-
ciated with the contingency table and compensates for
the mathematical problem just described. The Yates cor-
rection is used only when v = 1, that is, for 2 X 2 tables.

To illustrate the use and effect of the continuity correc-
tion, let us recompute the value of y* associated with the
data on counseling and filing of advance directives in
Table 5-1. From the observed and expected frequencies in
Tables 5-1 and 5-2, respectively,

» ~(0-E[-1)" (55-38.74|- 1)
X=X

38.74
L (190-106.26|-1)*  (15-31.26|~ 1)’
102.6 31.26
102—-85.74|— 1,)?
A =05) _19.501
85.74



B TABLE 5-5. Critical Values for the )(2 Distribution

Probability of Greater Value P
v .50 .25 .10 .05 .025 .01 .005 .001
1 .455 1.323 2.706 3.841 5.024 6.635 7.879 10.828
2 1.386 2.773 4.605 5.991 7.378 9.210 10.597 13.816
8 2.366 4.108 6.251 7.815 9.348 11.345 12.838 16.266
4 3.357 5.385 7.779 9.488 11.143 13.277 14.860 18.467
5 4.351 6.626 9.236 11.070 12.833 15.086 16.750 20.515
6 5.348 7.841 10.645 12.592 14.449 16.812 18.548 22.458
7 6.346 9.037 12.017 14.067 16.013 18.475 20.278 24.322
8 7.344 10.219 13.362 15.507 17.535 20.090 21.955 26.124
©) 8.343 11.389 14.684 16.919 19.023 21.666 23.589 27.877
10 9.342 12.549 15.987 18.307 20.483 23.209 25.188 29.588
11 10.341 13.701 17.275 19.675 21.920 24.725 26.757 31.264
12 11.340 14.845 18.549 21.026 23.337 26.217 28.300 32.909
13 12.340 15.984 19.812 22.362 24.736 27.688 29.819 34.528
14 13.339 17.117 21.064 23.685 26.119 29.141 31.319 36.123
15 14.339 18.245 22.307 24.996 27.488 30.578 32.801 37.697
16 15.338 19.369 23.542 26.296 28.845 32.000 34.267 39.252
17 16.338 20.489 24.769 27.587 30.191 33.409 35.718 40.790
18 17.338 21.605 25.989 28.869 31.526 34.805 37.156 42.312
19 18.338 22.718 27.204 30.144 32.852 36.191 38.582 43.820
20 fICRsE] 23.828 28.412 31.410 34.170 37.566 SER0 O 45.315
21 20.337 24.935 29.615 32.671 35.479 38.932 41.401 46.797
22 21.337 26.039 30.813 33.924 36.781 40.289 42.796 48.268
23 22.337 27.141 32.007 35.172 38.076 41.638 44,181 49.728
24 23.337 28.241 33.196 36.415 39.364 42.980 45.559 51.179
25 24.337 29.339 34.382 37.652 40.646 44.314 46.928 52.620
26 25.336 30.435 35.563 38.885 41.923 45.642 48.290 54.052
27 26.336 31.528 36.741 40.113 43.195 46.963 49.645 55.476
28 27.336 32.020 37.916 41.337 44.461 48.278 50.993 56.892
29 28.336 33.711 39.087 42.557 45.722 49.588 52.336 58.301
30 29.336 34.800 40.256 43.773 46.979 50.892 53.672 59.703
Sl 30.336 35.887 41.422 44,985 48.232 52.191 55.003 61.098
32 31.336 36.973 42.585 46.194 49.480 53.486 56.328 62.487
&8 32.336 38.058 43.745 47.400 50.725 54.776 57.648 63.870
34 33.336 39.141 44,903 48.602 51.966 56.061 58.964 65.247
8BS 34.336 40.223 46.059 49.802 53.203 57.342 60.275 66.619
36 35.336 41.304 47.212 50.998 54.437 58.619 61.581 67.985
37 36.336 42.383 48.363 52.192 55.668 59.893 62.883 69.346
38 37.335 43.462 49.513 53.384 56.896 61.162 64.181 70.703
&e 38.335 44.539 50.660 54.572 58.120 62.428 65.476 72.055
40 39.335 45.616 51.805 55.758 59.342 63.691 66.766 73.402
41 40.335 46.692 52.949 56.942 60.561 64.950 68.053 74.745
42 41.335 47.766 54.090 58.124 61.777 66.206 69.336 76.084
43 42.335 48.840 55.230 59.304 62.990 67.459 70.616 77.419
44 43.335 49.913 56.369 60.481 64.201 68.710 71.893 78.750
45 44.335 50.985 57.505 61.656 65.410 69.957 73.166 80.077
46 45.335 52.056 58.641 62.830 66.617 71.201 74.437 81.400
47 46.335 53.127 59.774 64.001 67.821 72.443 75.704 82.720
48 47.335 54.196 60.907 65.171 69.023 73.683 76.969 84.037
49 48.335 55.265 62.038 66.339 70.222 74.919 78.231 85.351
50 49.335 56.334 63.167 67.505 71.420 76.154 79.490 86.661
Adapted from Zar JH. Biostatistical Analysis, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall; 1984, 479-482:table B.1, by permission of Pearson
Education, Inc., Upper Saddle River, NJ.
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B TABLE 5-6. Medical Students Who Signed Organ
Donation Cards

Race/Ethnicity Yes No Total
White 290 57 347
Asian 40 17 57
Black 14 21 85
Total 344 95 439

Note that this value of y* is smaller than the uncor-
rected value, although the effect is so large that even the
smaller value of y” still exceeds the critical value that
defines the largest .1% of the y” distribution with 1 degree
of freedom, 10.282, so we still reject the null hypothesis of
no effect (P <.001), as before. This situation is not always
the case; when the effect or sample sizes are smaller than
in this example including the Yates correction can affect
the P value and even whether or not the result reaches
conventional statistical significance.

You should always include the Yates continuity correc-
tion when analyzing 2 X 2 contingency tables.

B CHI-SQUARE APPLICATIONS TO
EXPERIMENTS WITH MORE THAN
TWO TREATMENTS OR OUTCOMES

It is easy to generalize what we have just done to analyze
the results of experiments with more than two treatments
or outcomes. The z test we developed earlier in this chap-
ter will not work for such studies.

There is a chronic shortage of donated organs. To
develop better educational programs on organ donation
for medical students Teresa Edwards and colleagues* sur-
veyed 439 students in three Ohio medical schools to inves-
tigate whether there were any racial or ethnic differences
in attitudes toward organ donation. Table 5-6 shows the
results for whether the students had already signed an
organ donation card. Are these data consistent with the
null hypothesis that race/ethnicity is not related to having
signed an organ donation card?

*Edwards TM, Essmna C, Thornton JD. Assessing racial and ethnic dif-
ferences in medical student knowledge, attitudes and behaviors regarding
organ donation. ] Natl Med Assoc. 2007;99:131-137.

B TABLE 5-7. Expected Number of Students Who

Signed Organ Donation Cards if Race/Ethnicity
Did Not Matter*

Race/Ethnicity Yes No Total
White 271.90 75.10 347
Asian 44.67 12.33 57
Black 27.43 7.57 85

Total 344.00 95.00 439

We compute the expected numbers in each cell assum-
ing that the null hypothesis is true just as we did before.
Three hundred forty-four of the 439 students, 344/439 =
78.36%, signed donor cards. Thus, if race/ethnicity does
not affect the likelihood that a student signed a donor
card, then we would expect 78.36% of the 347 white stu-
dents (271.90 students), 78.36% of the 57 Asian students
(44.67 students) and 78.36% of the 35 Black students
(27.43 students) in the sample to have signed donor cards,
with the remaining students in each group not signing
donor cards (Table 5-7).

We now compute the x” test statistic as before. (Because
this is not a 2 X 2 table, we do not need to include the Yates
correction.)

2 _ Z(O—E)2 _ (290—271.90)° . (57-75.10)

E 271.90 75.10
+(40—44.67)2 . (17-12.33)* . (14-27.43)?
44.67 12.33 27.43
21-7.57)*
¥=38.186
7.57

The contingency table in Table 5-6 has three rows and
two columns, so the ” test statistic has

v=(r-1)(c-1)=3-1)(2-1)=2

degrees of freedom associated with it. Table 5-5 shows that
2 will exceed 38.186 less than .1% of the time when the
difference between the observed and expected frequencies
is due to random variation rather than an effect of the
sample group (in this case, race/ethnicity). Thus, we con-
clude that there is a significant difference in the likelihood
that a student will have signed a donor card, depending on
his or her race/ethnicity.
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Note, however, that we do not know where this differ-
ence comes from. Answering that question will require
doing multiple comparisons.

Let us now sum up how to use the y” statistic:

o Tabulate the data in a contingency table.

o Sum the number of individuals in each row and each col-
umn and figure the percentage of all individuals who fall
in each row and column, independent of the column or
row in which they fall.

* Use these percentages to compute the number of people
that would be expected in each cell of the table if the treat-
ment had no effect.

* Summarize the differences between these expected
frequencies and the observed frequencies by computing
X If the data form a 2 x 2 table, include the Yates
correction.

» Compute the number of degrees of freedom associated
with the contingency table and use Table 5-5 to see
whether the observed value of y° exceeds what would be
expected from random variation.

Recall that when the data fell into a 2 X 2 contingency
table, all the expected frequencies had to exceed about 5
for the )(2 test to be accurate. In larger tables, most statisti-
cians recommend that the expected number of individu-
als in each cell never be less than 1 and that no more than
20% of cells be less than 5. When this is not the case, the
%’ test can be quite inaccurate. The problem can be rem-
edied by collecting more data to increase the cell numbers
or by reducing the number of categories to increase the
numbers in each cell of the table.

Multiple Comparisons

Because the contingency table has two columns, we can
subdivide it into three 2 X 2 contingency tables to do all
pairwise comparisons, just as we did following rejecting
the null hypothesis in analysis of variance. As then, we can
use Bonferroni, Holm or Holm-Sidak corrections to
determine if individual comparisons are significant. The
reason that we can use these corrections is because they all
adjust the critical value of P required to reject individual
pairwise (or comparisons against a single control group)
based on considerations of how the risks of erroneously
rejecting the null hypothesis accumulate as we do multiple
comparisons. The values of P_; depend on the overall
family error rate one seeks to control (o) and the num-
ber of comparisons (k), but not the details of how one

obtained the individual P values that are compared to P_,.
In fact, the Bonferroni, Holm and Holm-Sidak procedures
can be applied to control the family error rate for any col-
lection of hypothesis tests that you wish to consider a fam-
ily of comparisons.

To apply this general principle to the problem of iden-
tifying what difference or differences between the racial/
ethnic groups in Table 5-6 led us to reject the null hypoth-
esis of no difference in the likelihood of a student having
a donor card, we first test for differences in each of the
three 2 x 2 tables we can construct from Table 5-6. Box 5-1
shows these three tables and the associated y test statis-
tics. (Note that we have to include the Yates correction
because these are 2 X 2 tables.)

Once we have the values of y” associated with each of
these three pairwise comparisons, we can determine
whether or not they are big enough to reject the null
hypothesis of no difference for the individual compari-
sons, while controlling the overall family error rate at oy
= 5%. As when we used the Holm-Sidak correction with
ttests following a significant analysis of variance, we order
the comparisons according to descending values of the y°
associated with each comparison (Table 5-8). In each case,
the P value exceeds the Holm-Sidak P_,, so we conclude
that each racial/ethnic group has significantly different
rates of signing organ donor cards from the other two,
with 84% of whites, 70% of Asians and 40% of Blacks
signing the donor cards.

There is no generally accepted procedure for subdivid-
ing contingency tables that are 3 x 3 or larger.

B THE FISHER EXACT TEST

The x” test can be used to analyze 2 x 2 contingency tables
when each cell has an expected frequency of at least 5. In
small studies, when the expected frequency is smaller than
5, the Fisher exact test is the appropriate procedure. This
test turns the liability of small sample sizes into a benefit.
When the sample sizes are small, it is possible to simply list
all the possible arrangements of the observations, and
then compute the exact probabilities associated with each
possible arrangement of the data. The total (two-tailed)
probability of obtaining the observed data or more
extreme patterns in the data is the P value associated with
the hypothesis that the rows and columns in the data are
independent.

The Fisher exact test begins with the fact that the
probability of observing any given pattern in the 2 x 2
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BOX 5-1 - All Pairwise Multiple Comparisons for Effects of Race/Ethnicity on Having Sighed an Advance
Directive for Organ Donation

The are three 2 x 2 contingency tables; note that the marginal sums are only based on the two groups of students
represented in each table. There is v=1 degree of freedom associated with each table, which can be used to look
up the appropriate P value for each comparison in Table 5-8.

White vs. Asian Students

Race/Ethnicity Yes No Total
White 290 57 347
Asian 40 17 57

Total 330 74 404

Overall 330/404 = 81.68% of students signed advance directives, so under the null hypothesis we expect
81.68% of the 347 white students (283.44) and 81.68% of the 57 Asian students (63.56) to have advanced
directives, so

2 Z(|o—E| —1) . (|1290 — 283.44| — 1) N (|57 — 63.56| — 1)

Xwisa = E 283.44 63.56
_ _1/)2 _ _1/\?
+(|4O 46.56| —15) +(|17 10.44| -1) - 5.012: P <.05
46.56 10.44
White vs. Black Students

Race/Ethnicity Yes No Total
White 290 57 347
Black 14 21 35
Total 304 78 382

Overall, 304/382 = 79.58% of students had advance directives, to
(|0—E|=%)*  (|290 —276.15| —%,)* (|57 —70.85| —1,)
2 = Uo—El=%P AN %

[E 276.15 70.85
_ _1/y2 _ _1/)2
(24 —27.85] A) + ([21-7.15| A) = 34.515; P < .001
27.85 7.15
Asian vs. Black
Race/Ethnicity Yes No Total
Asian 40 17 57
Black 14 21 35
Total 54 38 92

Likewise,

2o = Z(|0—E| - %)* _ (|40 -33.46| - 1)’ L (127 -23.54] - )
AvsB E 33.46 63.56

(114 -20.55| - 1) L (21-14.45| - 1)

=6.947; P < .01
20.55 14.45
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B TABLE 5-8. Pairwise Comparisons of Sperm Motil

Adjustment (Family Error Rate, o; = 0.05)

n Rabbit Cell Phone Experiment usi

Comparison X P J P = ar/(k—j+1) P<P.,?
White vs. Black 34.515 <.001 1 .0170 Yes
Asian vs. Black 6.947 <.010 2 .0253 Yes
White vs. Asian 5.012 <.050 3 .0500 Yes

v =1 degree of freedom; k = 3 comparisons.

contingency table with the observed row and column
totals in Table 5-9 is

R!R,!C !C,!
N!
0,!0,'0,10,,!

p

where O}, O,,, O,; and O,, are the observed frequencies
in the four cells of the contingency table, C, and C, are the
sums of the two columns, R, and R, are the sums of
the two rows, N is the total number of observations, and
the exclamation mark “!” indicates the factorial operator.*

Unlike the )(2 test statistic, there are one- and two-
tailed versions of the Fisher exact test. Unfortunately,
most descriptions of the Fisher exact test simply describe
the one-tailed version and many computer programs
compute the one-tailed version without clearly identifying
it as such. Because many researchers do not recognize this
issue, results (i.e., P values) may be reported for a single
tail without the researchers realizing it.

To determine whether or not investigators recognized
whether they were using one- or two-tailed Fisher exact
tests, W. Paul McKinney and colleagues’ examined the use
of the Fisher exact test in papers published in the medical
literature to see whether or not the authors noted the type
of Fisher exact test that was used. Table 5-10 shows the
data for the two journals: New England Journal of Medicine
and The Lancet. Because the numbers are small, ){2 is not
an appropriate test statistic. From the equation above, the

*The definition n! is nl = (n) (n—1)(n—2) X ...x (2)(1);e.g., 5! =5%x4
X3X2X1.

"McKinney WP, Young MJ, Harta A, Lee MB. The inexact use of Fisher’s
exact test in six major medical journals. JAMA. 1989;261:3430-3433.

probability of obtaining the pattern of observations in
Table 5-10 for the given row and column totals is

9114111112!
231
=21 00666
11811014!

Thus, it is very unlikely that this particular table would
be observed. To obtain the probability of observing a pat-
tern in the data this extreme or more extreme in the direc-
tion of the table, reduce the smallest observation by 1, and
recompute the other cells in the table to maintain the row
and column totals constant.

B TABLE 5-9. Notation for the Fisher Exact Test

Row Totals
011 012 Rl
021 02 R:
Column Total C, C, N

B TABLE 5-10. Reporting of Use of Fisher Exact

Test in the New England Journal of Medicine and

the Lancet
Test Identified?
Group Yes No Total
New England Journal 1 8 9
of Medicine
The Lancet 10 4 14
Total 11 12 23
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(Note that the numerator only depends on the row and

B TABLE 5-11. More Extreme Pattern of

Observations in Table 5-11, Using Smallest column totals associated with the table, which does not
Observed Frequency (in This Case, 1) change, and so only needs to be computed once.) Thus,
the one-tailed Fisher exact test yields a P value of P =
Test Identified? .00666 + .00027 = .00693. This probability represents the
e Yes No Total probability of obtaining a pattern of observations as
extreme or more extreme in one direction as the actual

New England Journal 0 9 9 observations in Table 5-10.
of Medicine To find the other tail, we list all the remaining pos-
The Lancet 11 3 14 sible patterns in the data that would give the same row
Totals 11 12 23 and column totals. These possibilities, together with the
associated probabilities, appear in Table 5-12. These

tables are obtained by taking each of the remaining
three elements in Table 5-10 one at a time and progres-

In this case, there is one more extreme table, given in sively making it smaller by one, then eliminating the

Table 5-11. This table has a probability of occurring of duplicate tables. Two of these tables have probabilities
at or below the probability of obtaining the original

ol4llntiz! observations, .00666: the ones with probabilities of
p= 23! — 00027 .00242 and .00007. These two tables constitute the
910131111 “other” tail of the Fisher exact test. There is a total

B TABLE 5-12. Other Patterns of Observations in Table 5-11 with the Same Row and Column Totals

Total Total
2 7 9 6 & 9
9 B 14 5 9 14
Total 11 12 23 Total 11 12 23
P =.05330 P=.12438
Total Total
3 6 9 7 2 9
8 6 14 4 10 14
Total 11 12 23 Total 11 12 23
P=.18657 P =.02665
Total Total
4 5) 9 8 1 9
7 7 14 3 11 14
Total 11 12 23 Total 11 12 23
P=.31983 P =.00242
Total Total
5 4 9 9 0 9
6 8 14 2 12 14
Total 11 12 23 Total 11 12 23
P=.27985 P =.00007
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probability of being in this table of .00242 + .00007 =
.00249.* Thus, the total probability of obtaining a pat-
tern of observations as extreme or more extreme than
that observed is P = .00693 + .00249 = .00942, and we
conclude there is a significant difference in the correct
presentation of the Fisher exact test in the New England
Journal of Medicine and The Lancet (P=.009). Indeed, it
is important when reading papers that use the Fisher
exact test to make sure the authors know what they are
doing and report the results appropriately.
Let us now sum up how to do the Fisher exact test:

o Compute the probability associated with the observed
data.

o Identify the cell in the contingency table with the smallest
frequency.

* Reduce the smallest element in the table by 1 and then
compute the elements for the other three cells so that the
row and column sums remain constant.

* Compute the probability associated with the new table.
* Repeat this process until the smallest element becomes its
lowest possible value, which is often but not always zero.

o List the remaining tables by repeating this process for the
other three elements.” List each pattern of observations
only once.

o Sequentially compute the probabilities associated with the
tables from most extreme to least extreme until reaching a
table that has a probability greater than the observed re-
sult.

* Add all the probabilities together that are equal to or
smaller than the probability associated with the observed
data.

This probability is the two-tail probability of observing
a pattern in the data as extreme or more extreme than
observed. Many computer programs show P values for the
Fisher exact test, without clearly indicating whether they
are one- or two-tail values. Make sure that you know
which value is being reported before you use it in your
work; the two-tailed Pvalue is generally the one you want.

*Note that the two tails have different probabilities; this is generally the
case. The one exception is when either the two rows or two columns
have the same sums, in which case the two-tail probability is simply
twice the one-tail probability. Some books say that the two-tail value of
Pis always simply twice the one-tail value. This is not correct unless the
row or column sums are equal.

"'Many of these computations can be avoided, see Appendix A.

B MEASURES OF ASSOCIATION BETWEEN
TWO NOMINAL VARIABLES

In addition to testing whether there are significant differ-
ences between two rates or proportions, people often want
a measure of the strength of association between some
event and different treatments or conditions, particularly
in clinical trials and epidemiological studies. In a prospective
clinical trial, such as the study of the effect of in-person
counseling on filing of advanced directives by homeless
people discussed earlier in this chapter (Table 5-1), inves-
tigators randomly assign people to treatment (in-person
counseling) or control (written materials only), then fol-
lowed them to see whether they filed an advance directive
or not. In that example, 38% (55 out of 145) of the people
receiving in-person counseling filed advance directives
and 13% (15 out of 117) of the people receiving written
materials filed advanced directives. These proportions are
estimates of the probability of filing an advanced directive
associated with each of these treatments; these results
indicate that the probability of filing an advance directive
was nearly tripled by in-person counseling. We will now
examine different ways to quantify this effect: relative risk
and odds ratio.

Prospective Studies and Relative Risk

We quantify the size of the association between treat-
ment and outcome with the relative risk, RR, which is
defined as

_ Probability of event in treatment group

RR=
Probability of event in control in group

For the advanced directive study, in which 37.9 of peo-
ple who received in-person counseling completed the
advance directives and 12.8% of people who just received
written instructions did so,

A

128

p written

The fact that the relative risk exceeds 1 indicates that
in-person counseling increases the likelihood (“risk”) that
a homeless person will file an advance directive. In clinical
trials evaluating treatments against placebo (or standard
treatment, when it would be unethical to administer a pla-
cebo) and the outcome is a negative event (such as death
or disease recurrence), a relative risk of less than 1 indi-
cates that the treatment leads to better outcomes.
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B TABLE 5-13. Arrangement of Data to Compute

Relative Risk

Number of People

Sample Group Disease No Disease Total

Treated (or exposed Np Ny ny
to risk factor)

Control (or not Nep Ne ne
exposed to risk
factor)
Total np ny

In an epidemiological study, the probability of an event
among people exposed to some potential toxin or risk fac-
tor is compared to people who are not exposed. The calcu-
lations are the same as for clinical trials.*

Relative risks greater than 1 indicate that exposure to
the toxin increases the risk of disease. For example, breath-
ing secondhand smoke is associated with a relative risk of
heart disease in nonsmokers of 1.3, indicating that non-
smokers married to smokers are 1.3 times more likely to
die from heart disease as nonsmokers married to non-
smokers (and so not breathing secondhand smoke at
home).

Table 5-13 shows the general layout for a calculation of
relative risk; it is simply a 2 X 2 contingency table. The
probability of an event in the treatment group (also called
the experimental event rate) is np/n and the probability
of an event in the control group (also called the control
event rate) is np/nc. Therefore, the formula for relative
risk is

Mop My

RR=
nephc

*In clinical trials and epidemiological studies one often wants to adjust
for other so-called confounding variables that could be affecting the prob-
ability of an event. It is possible to account for such variables using mul-
tivariate techniques using logistic regression or Cox proportional hazards
regression. For a discussion of these issues, see Glantz SA, Slinker BK.
Regression with a qualitative dependent variable. Primer of Applied Re-
gression and Analysis of Variance, 2nd ed. New York: McGraw Hill;
2001:chap 12.

"Barnoya J, Glantz SA. Cardiovascular effects of secondhand smoke:
nearly as large as smoking. Circulation. 2005;24:111:2684-2698.

This formula is simply a restatement of the definition
of relative risk presented above.

Using the results of the advance directives trial in Table
5-1, we compute

+ .
R 35/(55490) _ 38

= = 2.92
15/(15+102) .13

The most common null hypothesis that people wish to
test related to relative risks is that the relative risk equals 1
(i.e., that the treatment or risk factor does not affect event
rate). Although it is possible to test this hypothesis using
the standard error of the relative risk, most people simply
apply a x” test to the contingency table used to compute
the relative risk.”

To compute a relative risk, the data must be collected
as part of a prospective study in which people are random-
ized to treatment or control or subjects in an epidemio-
logical study® are followed forward in time after they are
exposed (or not exposed) to the toxin or risk factor of
interest. It is necessary to conduct the study prospectively
to estimate the absolute event rates in people in the treat-
ment (or exposed) and control groups.

Absolute Risk Increase (or Reduction) and
Number Needed to Treat

Another way to quantify this difference is to present the
absolute risk increase, which is simply the difference of the
probability of an event (in this case, filing an advance
directive) with and without the treatment (in-person
counseling), .38 — .13 = .25. The in-person counseling
increases the probability that a homeless person will file
an advanced directive by .25. This information can also
be used to compute the number needed to treat, which is
the number of people that would have to be treated to
have one additional event. The number needed to treat is
simply 1 divided by the absolute risk increase, in this case
1/.25 = 4. Thus, one would expect to have one additional
advance directive filed for each 4 homeless people that
receives in-person counseling. If studying a clinical inter-
vention that reduces the risk of an adverse event, we

“Traditionally, direct hypothesis testing of relative risks is done by exam-
ining confidence intervals, see Chapter 7.
SProspective epidemiological studies are also called cohort studies.
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compute the absolute risk reduction and the number
needed to treat (1 divided by the absolute risk reduction)
is the number of people that need to be treated to avoid
one adverse event.

Number needed to treat is often used as a measure of
the cost-effectiveness of a treatment. With a large clinical
trial it is often possible to detect small benefits of a ther-
apy. When the benefits of the control therapy are small
but positive with the new therapy being studied, it is
possible that the relative risk (in this case, the benefit)
for the new therapy will be larger even though the abso-
lute risk improvement is small and, so, the number
needed to treat to obtain one additional successful out-
come is very large. If the therapy is very expensive or has
serious side effects, it may not be sensible to use the ther-
apy even though it produces a statistically significant
improvement in outcomes.

Case-Control Studies and the Odds Ratio

Prospective studies are often difficult and expensive to do,
particularly if it takes several years for events to occur after
treatment or exposure. It is, however, possible to conduct
a similar analysis retrospectively based on so-called case-
control studies.

Unlike prospective studies, case-control studies are
done after the fact. In a case-control study, people who
experienced the outcome of interest are identified and the
number exposed to the risk factor of interest are counted.
These people are the cases. You then identify people who
did not experience the outcome of interest, but are similar
to the cases in all other relevant ways and count the num-
ber that were exposed to the risk factor. These people are
the controls. (Often investigators include more than one
control per case in order to increase the sample size.)
Table 5-14 shows the layout for data from a case-control
study.

This information can be used to compute a statistic
similar to the relative risk known as the odds ratio. The
odds ratio, OR, is defined as

Odds of exposure in cases

 0dds of exposure in controls

The proportion of cases (people with the disease)
exposed to the risk factor is np/n, and the proportion of
cases not exposed to the risk factor is n,/n,. (Note that

B TABLE 5-14. Arr

gement of Data to Compute

0Odds Ratio
Number of People
Disease No Disease

Sample Group “Cases” “Controls”
Exposed to risk factor flkz) ke

(or treatment)
Unexposed to risk factor Nyp Ny

(or treatment)

Total np ny

each of the denominators is appropriate for the numera-
tor; this situation would not exist if one was using case-
control data to compute a relative risk.) The odds of
exposure in the cases is the ratio of these two percentages:

"gp

n

. ngp/n
Odds of exposure in cases=—-2—L =

nypliy, Ty

Likewise, the odds of exposure in the controls is

Mty _ M

n

Odds of exposure in controls=

Mun/fn - Mun

Finally, the odds ratio is

n.n

ED"UN

OR = Mep/Myp _

n.nn

nEN/nUN UD"UN

Because the number of controls (7 and 1, in Table
5-14) depends on how the investigator designs the study,
you cannot use data from a case-control study to compute
a relative risk. In a case-control study the investigator
decides how many subjects with and without the disease
will be studied. This is the opposite of the situation in
prospective studies (clinical trials and epidemiological
cohort studies), when the investigator decides how many
subjects with and without the risk factor will be included
in the study. The odds ratio may be used in both case-
control and prospective studies, but must be used in case-
control studies.
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While the odds ratio is distinct from the relative risk,
the odds ratio is a reasonable estimate of the relative risk
when the number of people with the disease is small com-
pared to the number of people without the disease.*

As with the relative risk, the most common null
hypothesis that people wish to test related to relative risks
is that the odds ratio equals 1 (i.e., that the treatment or
risk factor does not affect the event rate). While it is pos-
sible to test this hypothesis using the standard error of the
odds ratio, most people simply apply a y” test to the con-
tingency table used to compute the odds ratio."

Passive Smoking and Breast Cancer

Breast cancer is the second leading cause of cancer death
among women (behind lung cancer). Smoking could
cause breast cancer because of the cancer-causing chem-
icals in the smoke that enter the body and some of these
chemicals appear in breast milk, indicating that they
reach the breast. To examine whether exposure to sec-
ondhand tobacco smoke increased the risk of breast
cancer in lifelong nonsmokers, Kenneth Johnson and
colleagues® conducted a case-control study using cancer
registries in Canada to identify premenopausal women
with histologically confirmed invasive primary breast
cancer. They contacted the women and interviewed
them about their smoking habits and exposure to sec-
ondhand smoke at home and at work. They obtained a
group of controls who did not have breast cancer,
matched by age group, from a mailing to women using

*In this case, the number of people who have the disease, n, and np, is
much smaller than the number of people without the disease, 7,y and
Moy SO 1y = Hppy + tpy = Mgy and 1 = nep + Moy = Hey. As a result,

no,
n n Nt
T ™ ™ eN
RR = ~ = =O0OR
n, n,

€  Cb LONLN
LS oN,

Because iy, = fgp, My = gy fep = Hyps and ney = nyy. For a more
detailed and practical discussion of how the odds ratio and relative risk
relate to each other, see Guyat GG, Rennie D, Meade MO, Cook DJ.
Understanding the results: more about odds ratios. In: Users’ Guide to the
Medical Literature, 2nd ed. New York: McGraw-Hill; 2008:chap 10.2.
"Direct hypothesis testing regarding odds ratios is usually done with con-
fidence intervals; see Chapter 7.

'T]ohnson KC, Hu J, Mao Y, Canadian Cancer Registries Epidemiology
Research Group. Passive and active smoking and breast cancer risk in
Canada, 1994-1997. Cancer Causes Control. 2000;11:211-221.

B TABLE 5-15. Passive Smoking and Breast Cancer

Number of People
Cases (Breast
Sample Group Cancer) Controls
Exposed to second- 50 43
hand smoke
Not exposed to second- 14 S5
hand smoke
Total 64 78

lists obtained from the provincial health insurance
authorities. Table 5-15 shows the resulting data.

The fraction of women with breast cancer (cases) who
were exposed to secondhand smoke is 50/(50 + 14) =
0.781 and the fraction of women with breast cancer not
exposed to secondhand smoke is 14/(50 + 14) = 0.218, so
the odds of the women with breast cancer having been
exposed to secondhand smoke is 0.781/0.218 = 3.58. Sim-
ilarly, the fraction of controls exposed to secondhand
smoke is 43/(43 + 35) = 0.551 and the fraction not
exposed to secondhand smoke is 35/(43 + 35) = 0.449, so
the odds of the women without breast cancer having been
exposed to secondhand smoke is 0.551/0.449 = 1.23.
Finally, the odds ratio of breast cancer associated with
secondhand smoke exposure is

Odds of secondhand smoke
exposure in women with
_ breast cancer _3.58
" Odds of secondhand smoke  1.23
exposure in controls

OR =291

Alternatively, we could use the direct formula for odds
ratio and compute
OR = Mepun _
"ypMuN

M =291
14 -43

Based on this study, we conclude that exposure to sec-
ondhand smoke increases the odds of having breast can-
cer by 2.91 times among this population. A y* analysis of
the data in Table 5-15 shows that this difference is statisti-
cally significant (P =.007).
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We now have the tools to analyze data measured on a
nominal scale. So far we have been focusing on how to
demonstrate a difference and quantify the certainty with
which we can assert this difference or effect with the P
value. Now we turn to the other side of the coin: What
does it mean if the test statistic is not big enough to reject
the hypothesis of no difference?

B PROBLEMS

5-1 Obtaining a blood sample of arterial blood permits
measuring blood pH, oxygenation, and CO, elimination
in order to see how well the lungs are functioning at oxy-
genating blood. The blood sample is often drawn from an
artery in the wrist, which can be a painful procedure.
Shawn Aaron and colleagues* compared the effectiveness
of a topical anesthetic gel applied to the skin over the
puncture point with a placebo cream. They observed
adverse effects (redness, swelling, itching, or bruising)
within 24 hours of administering the gel. Three of 36
people receiving the anesthetic gel and 8 of 40 receiving
the placebo gel suffered an adverse reaction. Is there evi-
dence of a difference in the rate of adverse effects between
the anesthetic gel and the placebo gel?

5-2 Adolescent suicide is commonly associated with alcohol
misuse. In a retrospective study involving Finnish adoles-
cents who committed suicide, Sami Pirkola and colleaguesT

*Aaron, et al. Topical tetracaine prior to arterial puncture: a randomized,
placebo-controlled clinical trial. Respir Med. 2003;97:1195-1199.
Pirkola, et al. Alcohol-related problems among adolescent suicides in
Finland. Alcohol Alcohol. 1999;34:320-328.

compared situational factors and family background
between victims who abused alcohol and those who did
not. Alcohol use was determined by family interview sev-
eral months following the suicide. Adolescents with alco-
hol problems, ranging from mild to severe, were classified
together in a group called SDAM (Subthreshold or Diag-
nosable Alcohol Misuse) and compared to victims with no
such reported alcohol problems. Some of Pirkola’s find-
ings are shown in Table 5-16. Use these data to identify the
characteristics of SDAM suicides. Are these factors specific
enough to be of predictive value in a specific adolescent?

Why or why not?

5-3 The 106 suicides analyzed in Prob. 5-2 were selected
from 116 suicides that occurred between April 1987 and
March 1988. Eight of the 10 suicides not included in the
study were due to lack of family interviews. Discuss the
potential problems, if any, associated with these exclu-
sions.

5-4 Major depression can be treated with medication, psy-
chotherapy or a combination of the two. M. Keller and
colleagues’ compared the efficacy of these approaches in
outpatients diagnosed with a chronic major depressive
disorder. Depression was diagnosed using the 24-item
Hamilton Rating Scale for Depression, where a higher
score indicates more severe depression. All subjects began
the study with a score of at least 20. The investigators

#Keller M, et al. A comparison of nefazodone, the cognitive behavioral-
analysis system of psychotherapy, and their combination for the treat-
ment of chronic depression. N Engl ] Med. 2000;342:1462—1470.

B TABLE 5-16. Characteristics of Swedish Adolescents Who Committed Suicide

Factor

SDAM Group (n = 44) Not in SDAM Group (n = 62)

Violent death (shooting, hanging, jumping, traffic)
Suicide under influence of alcohol

Blood alcohol concentration (BAC) > 150 mg/dL
Suicide during weekend

Parental divorce

Parental violence

Parental alcohol abuse

Paternal alcohol abuse

32 51
36 25
17 3
28 26
20 15
14 5
17 12
15 9
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randomly assigned patients who met study criteria to the
three groups— medication (nefazodone), psychotherapy,
or both—for 12 weeks then measured remission, defined
as having a follow-up score of 8 or less after 10 weeks of
treatment. The responses of the people they studied are
shown in Table 5-17. Is there any evidence that the differ-
ent treatments produced different responses? If so, which
one seems to work best?

B TABLE 5-17. Responses to Treatment of Depression

Treatment Remission No Remission

Nefazodone 36 131

Psychotherapy 41 132

Nefazodone and 75 104
psychotherapy

5-5 In debates over whether or not to pass legislation
making all restaurants and bars smoke free opponents of
the laws routinely claim that such laws harm the hospital-
ity industry economically and produce economic studies
supporting this claim. To assess the association of funding
for economic studies supporting this claim, Michelle
Scollo and colleagues* tabulated the conclusions of the
studies according to the funding source (Table 5-18). Does
the data support the claim that tobacco industry funded
studies are more likely to conclude that these laws would
have negative economic effects? What is the odds ratio for
a study concluding a negative economic effect having been
supported by the tobacco industry or one of its allies?

5-6 Meta-analysis is an important way to summarize the
biomedical literature because they pull together informa-
tion from many different studies to provide a quantitative
estimate of the effect of a treatment or exposure to a toxin.
As a result they are often widely cited an influential. To
determine whether there are biases in meta-analyses sup-
ported by a single pharmaceutical company, Veronica
Yank and colleagues’ examined the results and conclu-

*Scollo M, et al. Review of the quality of studies on the economic effects
of smoke-free policies on the hospitality industry. Tobacco Control.
2003;12:13-20.

"Yank V, et al. Financial ties and concordance between results and conclu-
sions in meta-analyses: retrospective cohort study. Br Med J. 2007;335:
1202-1205.

sions of meta-analyses of the efficacy of anti-hypertensive
drugs and the source of funding for the analyses. Table
5-19 presents their data.

B TABLE 5-18. Relationship between Tobacco

Industry Funding and Concluding that Smokefree
Laws Hurt the Hospitality Industry

Study Conclusion

Funded by Tobacco No Effect or

Industry or an Negative Positive
Industry Ally? Economic Effect Effect
Yes 29 2
No 2 60

5-7 Authorship in biomedical publications establishes
accountability, responsibility, and credit. The International
Committee of Medical Journal Editors established author-
ship criteria in 1985, which boil down to playing an active
role in the research and writing of the paper and being in a
position to take responsibility for a paper’s scientific con-
tent.” Misappropriation of authorship undermines the
integrity of the authorship system. There are two ways that
authorship is misappropriated: honorary authorship, when
someone (typically a department or division chair or the
person who obtained funding for the project) who did not
actually participate in preparing the paper, is listed as an
author, and ghost authorship, when someone who played
an important role in writing the paper is not listed as an
author. To investigate the prevalence of honorary and ghost
authorship in medical journals, Annette Flanagin and col-
leagues® sent questionnaires to a random sample of corre-
sponding authors for papers published in three highly
circulated general medical journals (Annals of Internal Med-
icine, Journal of the American Medical Association, and New
England Journal of Medicine) and three specialty journals
(American Journal of Cardiology, American Journal of Medi-
cine, and American Journal of Obstetrics and Gynecology).
Their results are shown in Table 5-20. Are there differences

“The full guidelines, which are accepted by most medical journals, are
available at: International Committee of Medical Journal Editors. Guide-
lines on authorship. BMJ. 1985;291:722.

SFlanagin A, et al. Prevalence of articles with honorary authors and ghost
authors in peer-reviewed medical journals. JAMA. 1998;280:222-224.
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B TABLE 5-19. Relationship between Drug Company Funding and Conclusions of Meta-analyses on Effects of

Their Drugs

Study Outcome

Number of
Funding Source Studies Number (%) with Favorable Results Number (%) with Favorable Conclusions
One drug company 49 27 (55%) 45 (92%)
All other* 75 49 (65%) 55 (73%)

*Includes studies supported by several drug companies, nonprofits, and papers where the source of funding was not stated.

B TABLE 5-20. Authorship Patterns in Several Well-regarded Journals

Total Number Articles with Articles with
Journal of Articles Honorary Authors Ghost Authors
American Journal of Cardiology 137 22 13
American Journal of Medicine 113 26 15
American Journal of Obstetrics and Gynecology 125 14 13
Annals of Internal Medicine 104 26 16
Journal of the American Medical Association 194 44 14
New England Journal of Medicine 136 24 22

in the patterns of honorary authorship and ghost author-
ship among the different journals? Are there differences in
patterns of honorary and ghost authorship between the
specialty journals and large circulation generalist journals?

5-8 Dioxin is one of the most toxic synthetic environmen-
tal contaminants. An explosion at a herbicide plant in
Sevaso, Italy in 1976 released large amounts of this long-
lasting contaminant into the environment. Because expo-
sure to dioxin during development is known to be
dangerous, researchers have been carefully following the
health status of exposed people and their children in
Sevaso and surrounding areas. Peter Mocarelli and col-
leagues* measured the serum concentration of dioxin in
potentially exposed parents and analyzed the number of
male and female babies born after 1976. They found that
when both parents were exposed to greater than 15 parts
per trillion (ppt) of dioxin the proportion of girl babies
born was significantly increased compared to couples not
exposed to this amount of dioxin. Mocarelli and col-

*Mocarelli P, et al. Paternal concentrations of dioxin and sex ratio of
offspring. Lancet. 2000;355:1858—1863.

leagues also investigated whether there were differences in
the proportion of female babies born if only one parent
was exposed to greater than 15 ppt of dioxin and whether
the sex of the parent (mother or father) made a difference
(Table 5-21). Are there differences in the proportion of
female babies born when only one parent is exposed to
greater than 15 ppt of dioxin?

5-9 Bipolar disorder is a disabling mental illness that is char-
acterized by episodes of elevated or irritable mood and
depression. Lithium carbonate has been the standard therapy
for treating bipolar disorder. In more recent years lithium has
been replaced with sodium valproate because of a wider
range of useful doses and fewer side effects. The BALANCE
investigators* conducted a randomized open label (in which
the subjects and investigators knew who was taking which
drug) clinical trial comparing valproate in combination with
lithium with valproate alone. The end point was having an
emergent mood episode during a 24-month period. Fifty-
nine (54%) of the 110 people in the lithium group and 76
(69%) of the 110 in the valproate group had events during
follow-up. What is the relative risk for an event for people
being treated with valproate compared to lithium (the tradi-
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tional treatment)? Is this difference statistically significant?
What is the number needed to treat?

B TABLE 5-21. Prenatal Dioxin Exposure and Baby
Gender

Female Male
Babies Babies

Parental Exposure to Dioxin

105 81
100 120

Father exposed; mother unexposed
Father unexposed; mother exposed

5-10 The chance of contracting disease X is 10%, regardless
of whether or not a given individual has disease A or disease
B. Assume that you can diagnose all three diseases with per-
fect accuracy and that in the entire population 1000 people
have disease A and 1000 have disease B. People with X, A,
and B have different chances of being hospitalized. Specifi-
cally, 50% of the people with A, 20% of the people with B,
and 40% of the people with X are hospitalized. Then

¢ Out of the 1000 people with A, 10% (100 people) also
have X; 50% (50 people) are hospitalized because they
have A. Of the remaining 50 (who also have X), 40% (20
people) are hospitalized because of X. Therefore, 70
people will be hospitalized with both A and X.

¢ Out of the 900 people with A but not X, 50% are hospi-
talized for disease A (450 people).

¢ Out of the 1000 with B, 10% (100 people) also have X;
20% (20 people) are hospitalized because of B, and of
the 80 people who are not hopitalized because of B, 40%
(32 patients) are hospitalized because they have X. Thus,
52 people with B and X are in the hospital.

¢ Of the 900 with B but not X, 20% (180 people) are hos-
pitalized because they have disease B.

Thus, Table 5-22 summarizes how a hospital-based inves-
tigator will encounter these patients in the hospital. Is
there a statistically significant difference in the chances
that an individual has X depending on whether or not he
has A or B in the sample of patients the hospital-based
investigator will encounter? Would the investigator reach
the same conclusion if she could observe the entire popu-
lation? If not, explain why."

*The BALANCE Investigators. Lithium plus valporate combination
therapy versus monotherapy for relapse prevention in bipolar i disorder
(BALANCE): a randomized open-label trial. Lancet. 2010;375:385-394.

B TABLE 5-22. Relationship Between Three

Diseases in Hospitalized Patients

Disease X No Disease X
Disease A 70 450
Disease B 52 180

5-11 Cigarette smoking is associated with increased inci-
dence of many types of cancers. Jian-Min Yuan and col-
leagues” wanted to investigate whether cigarette smoking
was also associated with increased risk of renal cell cancer.
They recruited patients with renal cell cancer from the Los
Angeles County Cancer Surveillance Program to serve as
cases in a retrospective case-control study. Control sub-
jects without renal cell cancer were matched on sex, age
(within 5 years), race, and neighborhood of residence to
each case subject. After recruiting a total of 2314 subjects
for the study, Yuan and colleagues visited subjects in their
homes and interviewed them about their smoking habits,
both past and present (Table 5-23). What effect does
smoking cigarettes have on the risk of developing renal
cell cancer?

B TABLE 5-23. Smoking and Renal Cell Cancer

Number of People

Renal Cell No

Cancer Cancer
Ever smoked cigarettes 800 713
Never smoked cigarettes 357 444

5-12 Yuan and colleagues also collected information from
subjects who had quit smoking. Based on the data in Table
5-24.is there any evidence that stopping smoking reduces
risk of developing renal cell cancer compared to current
smokers?

"This example is from Mainland D, The risk of fallacious conclusions
from autopsy data on the incidence of diseases with applications to heart
disease. Am Heart ].1953;45:644—654.

*Yuan J-M, et al. Tobacco use in relation to renal cell carcinoma. Cancer
Epidemiol Biomarkers Prev. 1998;7:429—433.
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B TABLE 5-24. Former vs. Current Smokers and
Renal Cell Cancer

B TABLE 5-25. Current Use of Hormone
Replacement Therapy and Survival

Number of People
Renal Cell
Cancer No Cancer
More than 20 years since 169 177
quitting
Current smokers 337 262

Number of People

Deceased Alive
Currently using hormone 574 8483
replacement therapy
Never used hormone 2051 17,520

replacement therapy

5-13 Many postmenopausal women are faced with the
decision of whether they want to take hormone replace-
ment therapy or not. Benefits of hormone replacement
include decreased risk of cardiovascular disease and
osteoporosis. However, hormone replacement therapy
has also been associated with increased risk of breast
cancer and endometrial cancer. Francine Grodstein and
colleagues* investigated the relationship between hor-
mone replacement therapy and overall mortality in a
large group of postmenopausal women. The women
used in this study were selected from a sample of regis-
tered nurses participating in the Nurses’ Health Study.
This prospective study has been tracking the health sta-
tus of a large group of registered nurses since 1976,
updating information every 2 years. Women became eli-
gible for Grodstein’s study when they became meno-
pausal and were included as long as they did not report
a history of cardiovascular disease or cancer on the orig-
inal 1976 questionnaire. Based on the data in Table 5-25,
is there any evidence that the risk of death differs in
women who were identified as currently using hormone
replacement therapy?

*Grodstein F et al. Postmenopausal hormone therapy and mortality. N
Engl ] Med. 1997;336:1769-1775.

5-14 Based on the data in Table 5-26, is there an increase
in risk of death in women who reported past hormone
replacement therapy use compared to women who never
used it?

B TABLE 5-26. Past Use of Human Therapy and
Survival

Number of People

Deceased Alive
Past use of hormone 1012 8621
replacement therapy
Never used hormone 2051 17,520

replacement therapy
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What Does “Not

Significant” Really

Mean?

Thus far, we have used statistical methods to reach con-
clusions by seeing how compatible the observations were
with the null hypothesis that the treatment had no effect.
When the data were unlikely to occur if this null hypoth-
esis was true, we rejected it and concluded that the treat-
ment had an effect. We used a test statistic (F, t, z, or )(2)
to quantify the difference between the actual observa-
tions and those we would expect if the null hypothesis of
no effect were true. We concluded that the treatment had
an effect if the value of this test statistic was bigger than
95% of the values that would occur if the treatment had
no effect. When this is so, it is common for medical
investigators to report a statistically significant effect. On
the other hand, when the test statistic is not big enough
to reject the hypothesis of no treatment effect, investigators
often report no statistically significant difference and then
discuss their results as if they had proven that the treat-
ment had no effect. All they really did was fail to demon-
strate that it did have an effect. The distinction between
positively demonstrating that a treatment had no effect
and failing to demonstrate that it did have an effect is
subtle but very important, especially in the light of the
small numbers of subjects included in most clinical
studies.*

*This problem is particularly encountered in small clinical studies in
which there are no “failures” in the treatment group. This situation often
leads to overly optimistic assessments of therapeutic efficacy. See Hanley
JA, Lippman-Hand A. If nothing goes wrong, is everything all right? In-
terpreting zero numerators. JAMA. 1983;249:1743-1745.

CHAPTER

As already mentioned in our discussion of the ¢ test,
the ability to detect a treatment effect with a given level
of confidence depends on the size of the treatment effect,
the variability within the population, and the size of the
samples used in the study. Just as bigger samples make it
more likely that you will be able to detect an effect,
smaller sample sizes make it harder. In practical terms,
this fact means that studies of therapies that involve only
a few subjects and fail to reject the null hypothesis of no
treatment effect may arrive at this result because the sta-
tistical procedures lacked the power to detect the effect
because of a too small sample size, even though the treat-
ment did have an effect. Conversely, considerations of the
power of a test permit you to compute the sample size
needed to detect a treatment effect of given size that you
believe is present.

B AN EFFECTIVE DIURETIC

Now, we make a radical departure from everything that
has preceded: we assume that the treatment does have
an effect.

Figure 6-1 shows the same population of people we
studied in Figure 4-3 except that this time the drug given
to increase daily urine production works. It increases
the average urine production for members of this popu-
lation from 1200 to 1400 mL/day. Figure 6-1A shows
the distribution of daily urine production for all 200
members of the population in the control (placebo)
group, and Figure 6-1B shows the distribution of urine

101
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production for all 200 members of the population in the
diuretic group.

More precisely, the population of people taking the
placebo consist of a normally distributed population
with mean g, = 1200 mL/day and the population of
people taking the drug consist of a normally distributed
population with a mean of y,;, = 1400 mL/day. Both pop-
ulations have the same standard deviation, =200 mL/
day.

Of course, an investigator cannot observe all mem-
bers of the population, so he or she selects two groups
of 10 people at random, gives one group the diuretic
and the other a placebo, and measures their daily urine
production. Figure 6-1C shows what the investigator
would see. The people receiving a placebo produce an
average of 1180 mL/day, and those receiving the drug
produce an average of 1400 mL/day. The standard devi-
ations of these two samples are 144 and 245 mL/day,

investigator would probably report that
the diuretic was effective.

respectively. The pooled estimate of the population
variance is

sh= Y (s ) = /5 (2457 +1447) = 40,381=201°
The value of t associated with these observations is

Xer — Xpla 1400—1180

= = =2.447
J& )+ () (21010 +(210°10)

t

which exceeds 2.101, the value that defines the most
extreme 5% of possible values of the # test statistic when
the two samples are drawn from the same population.
(There are v=rny + n,,—2=10+ 10— 2 = 18 degrees of
freedom.) The investigator would conclude that the
observations are not consistent with the assumption that

two samples came from the same population and report
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the investigator reported the drug had no
effect, he or she would be wrong.

that the drug increased urine production. And he or she
would be right.

Of course, there is nothing special about the two
random samples of people selected for the experiment.
Figure 6-2 shows two more groups of people selected at
random to test the drug, together with the results as they
would appear to the investigator. In this case, the mean
urine production is 1216 mL/day for the people given the
placebo and 1368 mL/day for the people taking the drug.
The standard deviations of urine production in the two
samples are 97 and 263 mL/day, respectively, so the pooled
estimate of the variance is 1/2 (97> + 263°) = 198°. The
value of r associated with these observations is

1368—-1216
=1.71

J198%/10)+(198%/10)

which is less than 2.101. Had the investigator selected
these two groups of people for testing, he or she would not

Daily urine production (mL/day)

have obtained a value of t large enough to reject the
hypothesis that the drug had no effect and probably
reported “no significant difference.” If the investigator
went on to conclude that the drug had no effect, he or she
would be wrong.

Notice that this is a different type of error from that
discussed in Chapters 3 to 5. In the earlier chapters, we
were concerned with rejecting the hypothesis of no effect
when it was true. Now we are concerned with not rejecting
it when it is not true. This situation is called a Type II error
or Berror.

What are the chances of making this second kind of
error?

Just as we could repeat this experiment more than 10>/
times when the drug had no effect to obtain the distribu-
tion of possible values of ¢ (compare with the discussion
of Fig. 4-4), we can do the same thing when the drug does
have an effect. Figure 6-3 shows the results of 200 such
experiments; 111 out of the resulting values of ¢ fall at or
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FIGURE 6-3. (A) The distribution of values of the t test statistic computed
from 200 experiments that consisted of drawing two samples of size 10 each
from a single population; this is the distribution we would expect if the
diuretic had no effect on urine production is centered on zero. (compare with
Fig. 4-4A.) (B) The distribution of t values from 200 experiments in which the
drug increased average urine production by 200 mL/day. t = 2.1 defines the
most extreme 5% of the possible values of t when the drug has no effect;
111 of the 200 values of t we would expect to observe from our data fall
above this point when the drug increases urine production by 200 mL/day.
Therefore, there is a 56% chance that we will conclude that the drug actually

increases urine production from our experiment.

above 2.101, the value we used to define a “big” t. Put
another way, if we wish to keep the P value at or below 5%,
there is a 111/200 = 56% chance of concluding that the
diuretic increases urine output when average urine output
actually increases by 200 mL/day. We say the power of the
test is .56. The power quantifies the chance of detecting a
real difference of a given size.

Alternatively, we could concentrate on the 89 of the
200 experiments that produced ¢ values below 2.101, in
which case we would fail to reject the hypothesis that
the treatment had no effect and be wrong. Thus, there
is an 89/200 = 44% = .44 chance of continuing to
accept the hypothesis of no effect when the drug really
increased urine production by 200 mL/day on the
average.

B TWO TYPES OF ERRORS

Now we have isolated the two different ways the random-
sampling process can lead to erroneous conclusions. These
two types of errors are analogous to the false-positive and
false-negative results one obtains from diagnostic tests.
Before this chapter we concentrated on controlling the
likelihood of making a false-positive error, that is, con-
cluding that a treatment has an effect when it really does

not. In keeping with tradition, we have generally sought to
keep the chances of making such an error below 5%; of
course, we could arbitrarily select any cutoff value we
wanted at which to declare the test statistic “big.” Statisti-
cians denote the maximum acceptable risk of this error by
o, the Greek letter alpha. If we reject the hypothesis of no
effect whenever P < .05, o = 0.05 or 5%. If we actually
obtain data that lead us to reject the null hypothesis of no
effect when the null hypothesis of no effect is true, statisti-
cians say that we have made a Type I error. All this logic is
relatively straightforward because we have specified how
much we believe the treatment affects the variable of
interest, that is, not at all.

What about the other side of the coin, the chance of
making a false-negative conclusion and not reporting an
effect when one exists? Statisticians denote the chance of
erroneously accepting the hypothesis of no effect by S, the
Greek letter beta. The chance of detecting a true positive,
that is, reporting a statistically significant difference when
the treatment really produces an effect, is 1 — 3. The power
of the test that we discussed earlier is equal to 1 — f3. For
example, if a test has power equal to .56, there is a 56%
chance of actually reporting a statistically significant effect
when one is really present. Table 6-1 summarizes these
definitions.
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B TABLE 6-1. Types of Erroneous Conclusions in Statistical Hypothesis Testing

Actual Situation

Conclude From Observations

Treatment Has an Effect

Treatment Has No Effect

Treatment has an effect True positive

Treatment has no effect
Type Il error B

Correct conclusion 1 —
False negative

False positive
Type | error o

True negative
Correct conclusion 1 — o

B WHAT DETERMINES A TEST’S POWER?

So far we have developed procedures for estimating and
controlling the Type I, or ¢, error. Now we turn our atten-
tion to keeping the Type I1, or 3, error as small as possible.
In other words, we want the power to be as high as possi-
ble. In theory, this problem is not very different from the
one we already solved with one important exception.
Since the treatment has an effect, the size of this effect influ-
ences how easy it is to detect. Large effects are easier to
detect than small ones. To estimate the power of a test, you
need to specify how small an effect is worth detecting.

Just as with false positives and false negatives in diag-
nostic testing, the Type I and Type II errors are inter-
twined. As you require stronger evidence before reporting
that a treatment has an effect, that is, make o smaller, you
also increase the chance of missing a true effect, that is,
make 3 bigger or power smaller. The only way to reduce
both azand fsimultaneously is to increase the sample size,
because with a larger sample you can be more confident
in your decision, whatever it is.

In other words, the power of a given statistical test
depends on three interacting factors:

o The risk of error you will tolerate when rejecting the hy-
pothesis of no treatment effect.

o The size of the difference you wish to detect relative to the
amount of variability in the populations.

o The sample size.

To keep things simple, we will examine each of these
factors separately.

The Size of the Type | Error a

Figure 6-3 showed the complementary nature of the max-
imum size of the Type I error o and the power of the test.
The acceptable risk of erroneously rejecting the hypothesis

of no effect, o, determines the critical value of the test
statistic above which you will report that the treatment
had an effect, P< o.. (We have usually taken or=0.05.) This
critical value is defined from the distribution of the test
statistic for all possible experiments with a specific sample
size given that the treatment had no effect. The power is the
proportion of possible values of the test statistic that fall
above this cutoff value given that the treatment had a spec-
ified effect (here a 200 mL/day increase in urine produc-
tion). Changing o, or the P value required to reject the
hypothesis of no difference, moves this cutoff point,
affecting the power of the test.

Figure 6-4 illustrates this point further. Figure 6-4A
essentially reproduces Figure 6-3 except that it depicts the
distribution of ¢ values for all 10 possible experiments
involving two groups of 10 people as a continuous distri-
bution. The top part, copied from Figure 4-4D, shows the
distribution of possible t values (with v=10+10-2=18
degrees of freedom) that would occur if the drug did not
affect urine production. Suppose we require P <.05 before
we are willing to assert that the observations were unlikely
to have arisen from random sampling rather than the
effect of the drug. According to the table of critical values
of the t distribution (see Table 4-1), for v= 18 degrees of
freedom, 2.101 is the (two-tail) critical value that defines
the most extreme 5% of possible values of the  test statis-
tic if the null hypothesis of no effect of the diuretic on
urine production is true. In other words, when we make
o = 0.05, in which case —2.101 and +2.101 delimit the
most extreme 5% of all possible t values we would expect
to observe if the diuretic did not affect urine production.

We know, however, that the drug actually increased
average urine production by u,;, — f,;, = 200 mL/day.
Therefore, the actual distribution of possible values of ¢
associated with our experiment will not be given by the
distribution at the top of Figure 6-4 (which assumes that
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A

a=0.05 Diuretic has no effect
Biggest 5% of
t values

shaded

Diuretic increases
average urine
production by

Power = 0.56 200 mL/day
T T T

B

a =0.01 Diuretic has no effect

Biggest 1% of
t values
shaded

Power = 0.27 Diuretic increases
average urine
production by

200 mL/day
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FIGURE 6-4. (A) The top panel shows the distribution of the t test statistic that would occur if the
null hypothesis was true and the diuretic did not affect urine production. The distribution is centered
on O (because the diuretic has no effect on urine production) and, from Table 4-1, t =+2.101 (and
—2.101) define the (two-tail) 5% most extreme values of the t test statistic that would be expected
to occur by chance if the drug had no effect. The second panel shows the actual distribution of the
t test statistic that occurs when the diuretic increases urine output by 200 mL/day; the distribution
of t values is shifted to the right, so the distribution is now centered on 2.236. The critical value of
2.101 is —.135 below 2.236, the center of this shifted distribution. From Table 6-2, .56 of the
possible t values fall in the one-tail above —.135, so we conclude that the power of a t test to detect
a 200 mL/day increase in urine production is 56%. (The power also includes the portion of the t
distribution in the lower tail below —2.101, but because this area is so small we will ignore it.)

(B) If we require more evidence before rejecting the null hypothesis of no difference by reducing

o to 0.01, the critical value of t that must be exceeded to reject the null hypothesis increases to
2.878 (and —2.878). Since the effect of the diuretic is unchanged, the actual distribution of t
remains centered on 2.236; the critical value of 2.878 is .642 above 2.236, the center of the
actual t distribution. From Table 6-2, .27 of the possible t values fall in the tail above .642, so the
power of the test drops to 27%.
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the null hypothesis that g, — i, = 0 is true and so is
centered on 0).

To determine where the actual distribution of values of
the f test statistic will be centered, recall from Chapter 4
that the 7 test statistic to compare two means, is

— Xdr - Xplu
./(szlndr)+(sz/npla)

Xar— Xpla computed from the observations is an esti-
mate of the actual difference in mean urine production
between the populations of people taking the drug and
taking the placebo, 4, — i, = 200 mL/day. The observed
standard deviation, s, is an estimate of the standard devia-
tion of the underlying populations, o, which, from
Figure 6-1, is 200 mL/day. Therefore, we would expect the
actual distribution of the ¢ test statistic to be centered on

lu'dr_lupla

t'=
J(@ )+ (0% ny)

1y, and n,, both are 10, so the actual distribution of the
t test statistic will be centered on

200

= =2.236
J(200%/10)+(200%/10)

t,

The lower distribution in Figure 6-4A shows this actual
distribution of possible #values associated with our exper-
iment: the ¢ distribution is moved to the right to be cen-
tered on 2.236 (rather than 0, as it was under the null
hypothesis). Fifty-six percent of these possible values of t,
that is, 56% of the area under the curve, fall above the
2.101 cutoff, so we say the power of the test is .56.

In other words, if the drug increases average urine pro-
duction by 200 mL/day in this population and we do an
experiment using two samples of 10 people each to test
the drug, there is a 56% chance that we will conclude that
the drug is effective (P < .05). To understand how we
obtain this estimate of the power, we need to consult
another table of critical values of the ¢ distribution, one
that gives the one-tail probability of being in the upper tail
of the distribution as a function of the value of ¢
(Table 6-2). The information in this table is essentially the
same as in Table 4-1, with the difference that it presents
critical values for one tail only, so the P values associated
with each value of ¢in this table are half the corresponding

values in Table 4-2. For example, the critical value of
t=+42.101, the two-tail critical value associated with P =
.05 for v=18 degrees of freedom in Table 4-2, corresponds
to a one (upper) tail probability of .025 in Table 6-2. This
situation arises because in a two-tail test of the null
hypothesis of no difference, half the risk of a false-positive
conclusion resides in the upper tail of the distribution of
possible values of ¢ and the other half resides in the lower
end of the distribution, below —2.101 in this case. Note,
from Table 6-2, that the probability of being in the lower
tail of the distribution of possible values of ¢ (with v=18)
at or below —2.101 is .025. The .025 probability of being at
or below —2.101 plus the .025 probability of being at or
above +2.101 add up to the .05 two-tailed probability we
found in Table 4-1.

As noted above, the actual distribution of values of the
t test statistic given that there is actually a 200 mL/day
increase in urine production with the diuretic is centered
on 2.236 rather than 0, as it would be if the null hypoth-
esis was true. The critical value of 2.101 that leads us to
reject the null hypothesis (from the top distribution in
Fig. 6-4A) is below the center of the actual distribution of
the ¢ test statistic by 2.101 — 2.236 = —.135. We can use
Table 6-2 to determine the probability of being in the
upper tail of this  distribution* (with v = 18 degrees of
freedom) is .56 (between .60, which corresponds to —.257
and .50, which corresponds to .000), yielding the power
of 56%.

Conversely, we can say that 3, the probability that we will
make a false negative, or Type II, error and accept the null
hypothesis of no effect when it is not true is 1 — .56 = .44 =
44%. Alternatively, we can use Table 6-2 to note that the
probability of being in the lower tail of the ¢ distribution (at
or below —.135) is .44.

Now look at Figure 6-4B. The two distributions of #val-
ues are identical to those in Figure 6-4A. (After all, the
drug’s true effect is still the same.) This time, however, we
will insist on stronger evidence before concluding that the
drug actually increases urine production. We will require
that the test statistic fall in the most extreme 1% of possible
values before concluding that the data are inconsistent
with the null hypothesis that the drug has no effect. Thus,
0=0.01 and tmust be below —2.878 or above +2.878 to fall

*Technically, we should also consider the portion of the actual ¢ distribu-
tion in the lower tail of Figure 6-4A below —2.101, but this portion is
extremely small so we will ignore it.
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B TABLE 6-2. Critical Values of t (One-Tailed)

Probability of Larger Value (Upper Tail)
.995 .99 .98 975 .90 .85 .80 .70 .60
Probability of Smaller Value (Lower Tail)

\% .005 .01 .02 .025 .10 A5 .20 .30 .40
2 -9.925 -6.965 -4.849 -4303 -2920 -1.886 -1.386 -1.061 -0.617 -0.289
4 -4.604 -3.747 -2999 -2.776 -2.132 -1.533 -1.190 -0.941 -0.569 -0.271
6 -3.707 -3.143 -2.612 -2.447 -1.943 -1.440 -1.134 -0.906 -0.553 -0.265
8 -3.355 -2.896 -2.449 -2.306 -1.860 -1.397 -1.108 -0.889 -0.546 -0.262
10 -3.169 -2.764 -2.359 -2.228 -1.812 -1.372 -1.093 -0.879 -0.542 -0.260
12 -3.055 -2.681 -2.303 -2.179 -1.782 -1.356 -1.083 -0.873 -0.539 -0.259
14 -2977 -2.624 -2.264 -2.145 -1.761 -1.345 -1.076 -0.868 -0.537 -0.258
16 -2.921 -2.583 -2.235 -2.120 -1.746 -1.337 -1.071 -0.865 -0.535 -0.258
18 -2.878 -2.552 -2.214 -2.101 -1.734 -1.330 -1.067 -0.862 -0.534 -0.257
20 -2.845 -2.528 -2.197 -2.086 -1.725 -1.325 -1.064 -0.860 -0.533 -0.257
25 -2.787 -2.485 -2.167 -2.060 -1.708 -1.316 -1.058 -0.856 -0.531 -0.256
30 -2.750 -2.457 -2.147 -2.042 -1.697 -1.310 -1.055 -0.854 -0.530 -0.256
85 -2.724 -2.438 -2.133 -2.030 -1.690 -1.306 -1.052 -0.852 -0.529 -0.255
40 -2.704 -2.423 -2.123 -2.021 -1.684 -1.303 -1.050 -0.851 -0.529 -0.255
60 -2.660 -2.390 -2.099 -2.000 -1.671 -1.296 -1.045 -0.848 -0.527 -0.254
120 -2.617 -2.358 -2.076 -1.980 -1.658 -1.289 -1.041 -0.845 -0.526 -0.254
oo -2.576 -2.326 -2.054 -1.960 -1.645 -1.282 -1.036 -0.842 -0.524 -0.253
Normal -2.576 -2.326 -2.054 -1.960 -1.645 -1.282 -1.036 -0.842 -0.524 -0.253

in the most extreme 1% of values. The top part of Figure
6-1B shows this cutoff point. The actual distribution of the
t test statistic is still centered on 2.236, so the 2.878 critical
value is now above the center of this distribution by 2.878
— 2.236 = .642. From Table 6-2, we find that only .27 or
27% of the actual distribution of ¢ falls above 2.878 in Fig-
ure 6-4B, so the power of the test has fallen to .27. In other
words, there is less than an even chance that we will report
that the drug is effective even though it actually is.

By requiring stronger evidence that there be a treatment
effect before reporting it we have decreased the chances of
erroneously reporting an effect (a Type I error), but we have
increased the chances of failing to detect a difference when
one actually exists (a Type II error) because we decreased
the power of the test. This trade-off always exists.

The Size of the Treatment Effect

We just demonstrated that the power of a test decreases as we
reduce the acceptable risk of making a Type I error, . The
entire discussion was based on the fact that the drug increased
average urine production by 200 mL/day, from 1200 to 1400
mL/day. Had this change been different, the actual distribu-
tion of ¢ values connected with the experiment also would
have been different. In other words, the power of a test
depends on the size of the difference to be detected.

Let us consider three specific examples. Figure 6-5A
shows the ¢ distribution (the distribution of possible values
of the f statistic) for a sample size of 10 if the diuretic had
no effect and the two treatment groups could be considered
two random samples drawn from the same population. The
most extreme 5% of the values are shaded, just as in Figure
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B TABLE 6-2. Critical Values of t (One-Tailed) (Continued)

Probability of Larger Value (Upper Tail)
.50 .40 .30 .20 A5 .10 .05 .025 .02 .01 .005
Probability of Smaller Value (Lower Tail)

.50 .60 .70 .80 .85 .90 .95 975 .98 .99 .995
0 0.289 0.617 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925
0 0.271 0.569 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604
0 0.265 0.553 0.906 1.134 1.440 1.943 2.447 2.612 3.143 3.707
0 0.262 0.546 0.889 1.108 1.397 1.860 2.306 2.449 2.896 8. 8515
0 0.260 0.542 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169
0 0.259 0.539 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055
0 0.258 0.537 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977
0 0.258 0.535 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921
0 0.257 0.534 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878
0 0.257 0.533 0.860 1.064 1.325 1.725 2.086 2.197 2.528 2.845
0 0.256 0.531 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787
0 0.256 0.530 0.854 1.055 1.310 1.697 2.042 2.147 2.457 2.750
0 0.255 0.529 0.852 1.052 1.306 1.690 2.030 2,188 2.438 2.724
0 0.255 0.529 0.851 1.050 1.303 1.684 2.021 2.123 2.423 2.704
0 0.254 0.527 0.848 1.045 1.296 1.671 2.000 2.099 2.390 2.660
0 0.254 0.526 0.845 1.041 1.289 1.658 1.980 2.076 2.358 2.617
0 0.253 0.524 0.842 1.036 1.282 1.645 1.960 2.054 2.326 2.576
0 0.253 0.524 0.842 1.036 1.282 1.645 1.960 2.054 2.326 2.576

6-4. Figure 6-5B shows the distribution of ¢ values we would
expect if the drug increased urine production an average of
200 mL/day over the placebo; 56% of the possible values are
beyond —2.101 or +2.101, so the power of the test is .56. (So
far we are just recapitulating the results in Fig. 6-4). Now,
suppose that the drug only increased urine production by
100 mL/day. In this case, as Figure 6-5C shows, the actual
distribution of the  test statistic will no longer be centered
on 0, but on

100

=1.118
J(200%/10)+ (200%/10)

t'=

Thus, we need to determine the fraction of the actual
possible values of the ¢ distribution that fall above 2.101
— 1.118 = .983. The sample size is the same as before

(n=101in each group), so there are still v=10+10 -2 =
18 degrees of freedom. From Table 6-2 we find that .17 of
the possible values fall above .983, so the power of the test
to detect a 100 mL/day change in urine production is only
.17 (or 17%). In other words, there is less than a 1 in 5
chance that doing a study of two groups of 10 people
would detect a change in urine production of 100 mL/day
if we required that P < .05 before reporting an effect.
Finally, Figure 6-5D shows the distribution of ¢ values
that would occur if the drug increased urine production by
an average of 400 mL/day. Because of this larger effect, the
actual distribution of the f test statistic will be centered on

400

=4.472
J(2007/10)+(200%/10)

t'=
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FIGURE 6-5. The larger the size of the

Power = 0.99

Value of t

The power of the test to detect this difference will be the
fraction of the t distribution larger than 2.101 — 4.472 =
—2.371. From Table 6-2, with v = 18 degrees of freedom,
.985 of all possible ¢ values fall above 2.371, so the power
of the test is 99%. The chance is quite good that our exper-
iment will lead to the conclusion that the diuretic affects
urine production (with P <.05).

Figure 6-5 illustrates the general rule: It is easier to
detect big differences than small ones.

We could repeat this process for all possible sizes of
the treatment effect, from no effect at all up to very large
effects, then plot the power of the test as it varies with
the change in urine production actually produced by the
drug. Figure 6-6 shows a plot of the results, called a
power function, of the test. It quantifies how much easier

Diuretic increases

treatment effect, the further the actual
distribution of the t test statistic will shift
away from zero; the more of the actual
distribution of t values will exceed the
critical value of 2.101 that determines the
most extreme (two-tail) 5% of the values
of t that will occur if the null hypothesis of
no effect is true. As a result, the greater
the effect of the diuretic, the greater the
power to detect the fact that the diuretic
increases urine production.

average urine
production by
400 mL/day

it is to detect a change (when we require a value of ¢ cor-
responding to P < .05 and two samples of 10 people
each) in urine production as the actual drug effect gets
larger and larger. This plot shows that if the drug
increases urine production by 200 mL/day, there is a
55% chance that we will detect this change with the
experiment designed as we have it; if urine production
increases by 350 mL/day, the chance of our detecting this
effect improves to 95%.

The Population Variability

The power of a test increases as the size of the treatment
effect increases, but the variability in the population under
study also affects the likelihood with which we can detect
a treatment effect of a given size.
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n =10 for placebo and drug samples

0.8

0.6

0.4+

Power of t test to detect effect with @ = 0.05

0.2

FIGURE 6-6. The power of a t test to detect a
change in urine production based on
experiments with two groups of people, each
containing 10 individuals. The dashed line

indicates how to read the graph. A t test has 0
a power of .56 for detecting a 200 mL/day 0
change in urine production.

Recall that the actual distribution of the t test statistic
is centered on

= 'udr - ‘upla
\/(O'z/ndr)+(62/n

)

in which iy, — 11, is the actual size of the treatment effect,
o'is the standard deviation of the two (different) underly-
ing populations, and ny, and n, are the sizes of the two
samples. In the interest of simplicity, we assume that the
two samples are the same size; that is ny, = n,, = n. Denote
the change in the population mean due to the treatment
with the Greek letter delta, &; then py, — f1,, = 6, and the
center of the actual ¢ distribution will be

J(&Pm)+(o?m) V2

pla

| | |
100 200 300
Increase in average daily urine production (mL/day)

400

Therefore, t', how far from 0 the center of the actual
distribution of the  test statistic moves, depends on the
change in the mean response () normalized by the popu-
lation standard deviation (o).

For example, the standard deviation in urine production
in the population we are studying is 200 mL/day (from
Fig. 6-1). In this context, an increase in urine production of
200 or 400 mL/day can be seen to be 1 or 2 standard devia-
tions, a fairly substantial change. These same absolute
changes in urine production would be even more striking if
the population standard deviation were only 50 mL/day, in
which case a 200 mL/day absolute change would be 4 stan-
dard deviations. On the other hand, these changes in urine
production would be hard to detect—indeed one wonders
if you would want to detect them —if the population stan-
dard deviation were 500 mL/day. In this case, 200 mL/day
would be only 0.4 standard deviation of the population.
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As the variability in the population ¢ decreases, the
power of the test to detect a fixed absolute treatment effect
size O increases and vice versa. In fact, we can combine the
influence of these two factors by considering the dimen-
sionless ratio ¢ = 8/ 0, known as the noncentrality param-
eter, rather than each one separately.

Bigger Samples Mean More Powerful Tests

So far we have seen two things: (1) The power of a test to
correctly reject the hypothesis that a treatment has no effect
decreases as the confidence with which you wish to reject
that hypothesis increases; (2) the power increases as the
size of the treatment effect, measured with respect to the
population standard deviation, increases. In most cases,
investigators cannot control either of these factors and for
a given sample size are stuck with whatever the power of
the test is. However, the situation is not totally beyond
their control. They can increase the power of the test with-
out sacrificing the confidence with which they reject the
hypothesis of no treatment effect (&) by increasing the
sample size.

Increasing the sample size generally increases the
power for two reasons. First, as the sample size grows the
number of degrees of freedom increases, and the value of
the test statistic that defines the “biggest” 100 percent of
possible values under the assumption of no treatment
effect decreases. Second, as the equation for ¢’ above
shows, the value of # (and many other test statistics)
increases as sample size n increases. As a result, the distri-
bution of t values that occur when the treatment has an
effect of a given size /0 is located at higher ¢ values as
sample size increases.

For example, Figure 6-7A shows the same information
as Figure 6-4A, with the sample size equal to 10 in each of
the two groups. Figure 6-7B shows the distribution of pos-
sible ¢ values if the hypothesis of no effect were true as well
as the distribution of ¢ values that would appear if the
drug still increased urine production by 200 mL/day but
now based on an experiment with 20 people in each
group. Even though the size of the treatment effect (6 =
200 mL/day) and the standard deviations of the underly-
ing populations (o =200 mL/day) are the same as before,
the actual distribution of the t test statistic moves further
to the right to

, 200

= =3.162
J(200%20)+(200%/20)

because the sample size of each group increased from n =
10 to n=20.

In addition, because there are now 20 people in each
group, the experiment has v =2(20 — 1) = 38 degrees of
freedom. From Table 4-1, the critical value of ¢ defining the
most extreme (two-tail) 5% of possible ¢ values under
the null hypothesis of no effect falls to 2.024. To obtain the
power of this test to reject the null hypothesis, we find the
proportion of the ¢ distribution at or above 2.024 —3.162 =
—1.138 with v = 38 degrees of freedom. From Table 6-2, we
find that the power of this study to detect an effect has
increased to .86, up substantially from the value of .56 asso-
ciated with a sample size of 10 in each treatment group.

We could repeat this analysis over and over again to
compute the power of this test to detect a 200 mL/day
increase in urine production for a variety of sample sizes.
Figure 6-8 shows the results of such computations. As the
sample size increases, so does the test’s power. In fact, esti-
mating the sample size required to detect an effect large
enough to be clinically significant is probably the major
practical use to which power computations are put. Such
computations are especially important in planning ran-
domized clinical trials to estimate how many patients will
have to be recruited and how many centers will have to be
involved to accumulate enough patients to obtain a large
enough sample to complete a meaningful analysis.

What Determines Power? A Summary

Figure 6-9 shows a general power curve for the t test, allow-
ing for a variety of sample sizes and differences of interest.
All these curves assume that we will reject the null hypoth-
esis of no treatment effect whenever we compute a value of
t from the data that corresponds to P< .05 (o¢=0.05). If we
were more or less stringent in our requirement concerning
the size of ¢ necessary to report a difference, we would
obtain a family of curves different from those in Figure 6-9.

There is one curve for each value of the sample size n
in Figure 6-9. This value of n represents the size of each of
the two sample groups being compared with the  test.
Most power charts (and tables) present the results assum-
ing that each of the experimental groups is the same size
because, for a given total sample size, power is greatest
when there are equal numbers of subjects in each treat-
ment group. Thus, when using power analysis to estimate
the sample size for an experiment, the result actually
yields the size of each of the sample groups. Power analysis
also can be used to estimate the power of a test that yielded
a negative finding; in the case of unequal sample sizes, use
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FIGURE 6-7. As the sample size
increases from 10 per group (A) to 20
per group (B), the power of the test
increases for two reasons: (1) the critical
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X ! . Power = 0.86
value of t for a given confidence level in
concluding that the treatment had an
effect decreases, and (2) the values of . A v

the t statistic associated with the
experiment increase.

the size of the smaller sample in the power analysis with
the charts in this book.* This procedure will give you a
conservative (low) estimate for the power of the test.

To illustrate the use of Figure 6-9, again consider the
effects of diuretic presented in Figure 6-1. We wish to
compute the power of a t test (with a 5% risk of a Type I
error, o= 0.05) to detect a mean change in urine produc-
tion of 200 mL/day when the population has a standard
deviation of 200 mL/day. Hence

_ 6 200 mL/day _

=200 mL/day

*There are computer programs that yield exact power calculations when
sample sizes are not equal.

3.
Valueof t |

Since the sample size is n= 10 (in both the placebo and
drug groups), we use the “n=10"line in Figure 6-9 to find
that this test will have a power of .56.

All the examples in this chapter so far deal with esti-
mating the power of an experiment that is analyzed with
a ttest. It is also possible to compute the power for all the
other statistical procedures described in this book.
Although the details of the computations are different, the
same variables are important and play the same general
roles in the computation.

Muscle Strength in People with Chronic
Obstructive Pulmonary Disease

The stair climb power test is a functional test used
among older people to measure leg muscle power.
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Drug increases average
urine production by 200 mL/day

0.05

Power of t test to detect effect with «

FIGURE 6-8. The effect of sample size on
the power of a t test to detect a 200 mL/
day increase in urine production with o =
0.05 and a population standard deviation in
urine production of 200 mL/day. The
dashed line illustrates how to read the

0 T T
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Sample size (each test group)

To assess whether this test could be used to assess leg
muscle power in people with chronic obstructive pul-
monary disease (COPD) Marc Roig and colleagues*
measured the power delivered by people with mild-to-
severe COPD with age and sex matched controls with-
out disease but lived sedentary lifestyles. Subjects were
told to climb 10 stairs as quickly as they could and the
power computed as the vertical velocity (the gain in
height of the 10 stairs divided by the length of time it
took the subject to climb the stairs) times the subject’s
weight. Based on historical data, Roig and colleagues

*Roig M, Eng JJ, MacIntyre DL, Road JD, Reid WD. Associations of the
stair climb power test with muscle strength and functional performance
in people with chronic obstructive pulmonary disease: a cross-sectional
study. Phys Ther. 2010;90:1774-1782.

graph. A sample size of 10 yields a power of
40 .56 for a t test to detect a 200 mL/day
change in urine production.

expected the normal control people to deliver about 375
W with a standard deviation of about 125 W.

How large a sample size would be necessary to have an
80% power to detect a 100 W change in the power deliv-
ered by the people with COPD using conventional statisti-
cal significance (o= .05)?

The desired effect size, 8, is 100 W and the estimated
standard deviation, o, is 125 W, so the noncentrality
parameter is

From Figure 6-9, the sample size to obtain a power of
0.8 is n =26 for each sample.

Of course, we could also compute the power of a study
with a given sample size to detect a specified effect.
Box 6-1 illustrates such a calculation.
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FIGURE 6-9. The power function for a t test for 2
comparing two experimental groups, each of %
size n, with o= 0.05. §is the size of the °
change we wish to detect and o'is the 5 044
population standard deviation. If we had taken £
a = 0.01 or any other value, we would have S
obtained a different set of curves. The dashed S
L 2
line indicates how to read the power of a test o

to detect a o= 200 mL/day change in urine
production with a § = 200 mL/day standard 0.2
deviation in the underlying population with a
sample size of n = 10 in each test group; the
power of this test is .56. The dotted line
indicates how to find the power of an
experiment designed to study the effects of
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anesthesia on the cardiovascular system in 0
which ¢ = §/0 =.55 with a sample size of 9; -2
the power of this test is only .19.

BOX 6-1 * Power to Detect a Change in Stair
Climbing Performance Given the Sample Size

If Roig and colleagues included 20 people in each of
the control and COPD groups, what would be the power
of the study to detect a 25% change stair climbing
power assuming conventional statistical significance
(= .05)?

Because normal people have an average stair
climbing power of 375 W with, a 25% change in pain
score would be an effect size, 8, of .25 x 375 =94 W.
The estimated standard deviation, o, is 125 W, so the
noncentrality parameter is

4
o= é = 9— =.75
o 125
From Figure 6-9, with a sample size of n = 20 in
each group, the power to detect this effect is .64.

¢ =0/o

We summarize our discussion of the power of hypothesis-

testing procedures with these five statements:

The power of a test tells the likelihood that the hypothesis
of no treatment effect will be rejected when the treatment
has an effect.

The more stringent our requirement for reporting that the
treatment produced an effect (i.e., the smaller the chances
of erroneously reporting that the treatment was effective),
the lower the power of the test.

The smaller the size of the treatment effect (with respect to
the population standard deviation), the harder it is to
detect.

The larger the sample size, the greater the power of the
test.

The exact procedure to compute the power of a test de-
pends on the test itself.
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B POWER AND SAMPLE SIZE FOR
ANALYSIS OF VARIANCE*

The issues underlying power and sample size calculations in
analysis of variance are no different than for the t test. The
only difference is the way in which the size of the minimum
detectable treatment effect is quantified and the mathemati-
cal relationship relating this magnitude and the risk of erro-
neously concluding a treatment effect. The measure of the
treatment effect to be detected is more complicated than in a
t test because it must be expressed as more than a simple dif-
ference of two groups (because there are generally more than
two groups in an analysis of variance). The size of the treat-
ment effect is again quantified by the noncentrality parameter,
@, although it is defined differently than for a ¢ test. To esti-
mate the power of an analysis of variance, you specify the
number of treatment groups, sample size, risk of a false pos-
itive (&) you are willing to accept, and size of the treatment
effect you wish to detect (), then look the power up in charts
for analysis of variance, just as we used Figure 6-9 for ¢ tests.

The first step is to define the size of the treatment effect
with the noncentrality parameter. We specify the mini-
mum difference between any two treatment groups we
wish to detect, &, just as when computing the power of the
t test. In this case, we define

where o is the standard deviation within the underlying
population, k is the number of treatment groups, and # is
the sample size of each treatment group.” (Note the

*In an introductory course, this section can be skipped without interfer-
ing with the remaining material in the book.

"We present the analysis for equal sample sizes in all treatment groups
and the case where all the means but one are equal and the other differs
by &. This arrangement produces the maximum power for a given total
sample size. An alternative definition of ¢ involves specifying the means
for the different treatment groups that you expect to detect, 4, for each
of the k groups. In this case,

n(u, - 0’
ko?

o=

where
_ Py
k
is the grand population mean. The definition of ¢ in terms of the mini-

mum detectable difference is generally easier to use because it requires
fewer assumptions.

similarity with the definition of ¢ = 6/ for the ¢ test.)
Once ¢ is determined, obtain the power by looking in a
power chart such as Figure 6-10 with the appropriate
number of numerator degrees of freedom, v, =k—1 and
denominator degrees of freedom v, = k(n —1). (A more
complete set of power charts for analysis of variance
appears in Appendix B.)

These same charts can be used to estimate the sample
size necessary to detect a given effect with a specified power.
The situation is a little more complicated than it was in the
t test because the sample size, 1, appears in the noncentral-
ity parameter, ¢, and the denominator degrees of freedom,
Vv,. As a result, you must apply successive guesses to find 7.
You first guess 7, compute the power, then adjust the guess
until the computed power is close to the desired value. The
example below illustrates this process.

Power and Sperm Motility

Suppose in the experimental study of rabbit sperm motil-
ity with three (k= 3) experimental conditions — ordinary
control, stress control and cell phone exposure — we also
wanted to measure the effect of cell phone exposure on
sperm count. Normal sperm count in a rabbit is about
350 million sperm/mL with a standard deviation of about
20 million sperm/mL. What would be the power of the
study with n = 8 rabbits per group we analyzed earlier
(Box 3-1) to detect a change of 50 million sperm/mL at
conventional statistical significance (o= .05)?

Using this information, the noncentrality parameter is

2.88
-l

There are v, = k— 1 =3 — 1 =2 numerator and v,=k
(n—-1)=3(8-1)=21 denomlnator degrees of freedom.
From the power chart in Figure 6-10, the power to detect
a change of 50 million sperm/mL is .99, so we can be very
confident of detecting this change.

This is an exceptionally high power. Given the cost of
doing the experiments and a desire to minimize the num-
ber of animals used in the experiments, suppose that we
would be happy with .80 power. We estimate the sample size
using the same noncentrality parameter and power chart,
but, because the sample size, 1, appears both in the noncen-
trality parameter and the denominator degrees of freedom,
v, which, in turn, determines which line in Figure 6-10 we
use, we need to solve for # iteratively. Box 6-2 shows that
this process yields a sample size of 5 per group.
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FIGURE 6-10. The power function for
analysis of variance for v, =2 and o=
0.05. Appendix B contains a complete set
of power charts for a variety of values of
v, and a=0.05 and .01. (Source:
Adapted from Pearson ES, Hartley HO.
Charts for the power function for analysis
of variance tests, derived from the non-
central f distribution. Biometrika
1951;38:112-130.)
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BOX 6-2 = Sample Size to Detect a Change of 50 million sperm/mL in Rabbit Study

There are three (k = 3) experimental conditions and we want to be able to detect a difference of 6 = 50 million
sperm/mL with a standard deviation of o = 20 million sperm/mL with & = .05? We know that n = 8 rabbits per
group gives more power than we need, so try n = 4. In this case the noncentrality parameter would be

¢=§ i=5_0fi=2_04
ocV2k 20\V2-3

There are v, =k -1 =3 -1 =2 numerator and v, =k (n — 1) = 3 (4 — 1) = 9 denominator degrees of freedom.
From the power chart in Figure 6-10, the power to detect a change of 50 million sperm/mL is .76, which is a little
below our target of .80. Since it is close, try n =5, so

s8[n 505 )
o\2k 20\V2-3

There are still v, =k -1 =3 -1 = 2 numerator degrees of freedom, but now there are v,=k(n-1)=3 (5-1)=12
denominator degrees of freedom. From Figure 6-10, the power is .89, so we can do this experiment with n = 5 rabbits
in each group and achieve the desired power.
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2 — Blupper)

Value of z

FIGURE 6-11. (A) z,,, is the two-tail critical value of the z test statistic that
defines the o percent most extreme values of the z test statistic that we would
expect to observe in an experiment comparing two proportions if the null
hypothesis of no differences in the underlying populations was true. (B) If
there is a difference in the proportions with the characteristic of interest in the
two populations, the distribution of possible values of the z test statistic will
no longer be centered on O, but rather a value that depends on how big the
actual differences in proportions between the two populations, |p, — p,|, is.
The fraction of this actual distribution of the z test statistic that fall above z,,,
approximates the power of the test. (compare with Fig. 6-4.)

B POWER AND SAMPLE SIZE FOR
COMPARING TWO PROPORTIONS *

The development of formulas for power and sample size
when comparing two proportions is similar to the proce-
dure that we used for the t test, except that we will be bas-
ing the computations on the normal distribution. We wish
to find the power of a z test to detect a difference between
two proportions, p; and p, with sample sizes n, and n,.
Recall, from Chapter 5, that the z test statistic used to
compare two observed proportions, is

SPz -

Under the null hypothesis of no difference, this test
statistic follows the standard normal distribution
(with mean 0 and standard deviation 1) given in the

*If time is limited this material can be skipped without loss of conti-
nuity.

last row of Table 6-2. We denote the two-tailed critical
value of z that we require to reject the null hypothesis
of no difference with Type I error ¢, z,,). For example,
if we follow the convention of accepting a 5% risk of a
false positive (i.e., reject the null hypothesis of no dif-
ference when P < .05), from Table 4-1, z,,) = 1.960
(Fig. 6-11A).

If there is actually a difference in the two proportions,
P, and p,, then the actual distribution of the z test statistic
will be centered on

Z’ |p2_pl‘

st’Pl

where

_ |p,(=p,) p(-p)

n n

2 1

As we did with the ¢ test, we determine the power to
detect the difference p, — p; as the proportion of the actual
distribution of the z test statistic (Fig. 6-11B) that falls
above z,,. Hence, the power of the test to detect the
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specified difference could be estimated as the proportion
of the normal distribution above

—Z’:Z _|p2_p1‘

a(2)
SPz 'y

zZ =

1-B(upper) — 2 a(2)

where 2, _ gper is the value of z that defines the upper
(I — B) percentage of the normal distribution (from
Table 6-2).*

The estimate of power obtained by matching the two
distributions in Figure 6-11 based on z values can be
improved by adjusting the matching criterion because in
real units that standard deviations of the normal distribu-
tion under the null hypothesis (analogous to the top panel
in Fig. 6-11) and the alternative hypothesis (the bottom
panel) are slightly different. We obtain a more accurate esti-
mate of the power by adjusting for this fact, which yields

53 lp,—pil
_ 7 1P P
Z1-Blupper) — s Za2)
Pr—p P21
.97 —.87]
=1.960 - ——=-.257
.0451

where p is the weighted average of the two anticipated
probabilities

n2p2 +n1pl

E:
n,+n

and S5 is the associated standard deviation

o \/ﬁ(l—?)j(l—ﬁ)

P n n

2 1

Power and Polyethylene Bags

When we evaluated the effect on mortality of keeping
extremely low birth weight infants warm by wrapping them
in polyethylene bags compared to traditional methods

*Technically, we should also include the part of the distribution in Fig-
ure 6-11A that falls below the lower z,, tail of the distribution in
Figure 6-11B, but this tail of the distribution rarely contributes anything
of consequence. Note that these calculations do not include the Yates
correction. It is possible to include the Yates correction by replacing (p,
— py) with (p, — p; = %) (1/n, + 1/(n;). Doing so makes the arithmetic
more difficult, but does not represent a theoretical change. Including the
Yates correction lowers the power or increases the sample size.

(Table 5-3) we did not reject the null hypothesis of no
effect. To get a sense of how confident we can be in drawing
a negative conclusion from these data (and accept the null
hypothesis of no effect), we will compute the power of this
study to detect a 10% difference in survival.

In Chapter 5, we analyzed these data using )(2, but
because this is a 2 X 2 contingency table, we could also do
the same analysis as a comparison of two proportions.
Sixty-one of 70 infants who were warmed using traditional
methods, 61/70 = 87% survived. Therefore, we will set the
initial proportion, p,, to .87 and final proportion, p,, to .87
+.10=.97. The sample size, 1, of both groups is 70. We will
use conventional statistical significance of = .05.

We begin by using the target proportions to compute

_Mmpytmp, _70-.97+70-.87 _

D 92
b n,+n 70+70
. _ [p0=p), p0-D)
n, n,
_ \/.92(1—.92) L 920-92) _ o
70 70
and
_ pz(l_pz) pz(l_pz)
PP nz + nz
:\/.97(1—.97)+.87(1—.87) _ o451
70 70

The two-tail 95% critical value of the normal distribu-
tion, z,,), is, from Table 6-2, 1.960 so the power of the test
is the fraction of the normal distribution above

S— —
_ p,—P
Z1-B(upper) = s Za2)” —
Pa—py P2
.04 97 —.
0459 96027287 55
.0451

From Table 6-2, the power of the test is 59%, which
means that we can be reasonably confident in accepting
the null hypothesis and concluding that there was no sur-
vival benefit from using the polyethylene bags to keep the
infants warm.

Box 6-3 shows that this study had a 16% power to
detect a 5% survival benefit, so if you did not think chang-
ing the technology for keeping extremely low birth weight
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BOX 6-3 ° Power to Detect a 5% Survival Benefit of Using Polyethylene Bags to Keep Extremely Low

Birth Weight Infants Warm

We use the proportion of infants who survived using traditional methods as the initial proportion so set p, = .87
and the final proportion 5% higher, so p, = .87 + .05 = .92. The sample size, n, of both groups is 70.

We begin by using the target proportions to compute
70-.92+70-.87

n2p2 + nlpl

.895

5: =
n, +n,

70+70

s - \/5(1—5) + p(l-p) _ \/.895(1— .895) + .895(1 -.895) - 0518

n; ny

and

70 70

.92(1-.92) N .87(1-.87)

=.0516

s = pg(i_p2)+p2(1_p2)=
P2=P1 n2 n2

70 70

We will use conventional statistical significance of o = .05, so we use the two-tail 95% critical value of the
normal distribution, z,,,), is, from Table 6-2, 1.960. The power of the test is the fraction of the normal distribution

above

Sp Py =Py _

.0518

1960 9287 _

Z1-B(uppen) = s Za2) ~

P2=P1 P2=P1

From Table 6-2, the power of the test is 13%.

s "~ .0516

=.999
.0516

infants warm would be worth doing if it had a mortality
benefit of 5%, you could not be very confident in reaching
a negative conclusion.

Sample Size for Comparing Two Proportions

To obtain the sample size to compare two proportions,
simply take z,_g,pper) as given and solve the resulting
equations for #, the size of each group. Assuming that the
two groups are the same size, this process yields

2
A[H /Hﬂ
A

46°

n=

We can use these formulas to estimate the sample size
necessary to detect a 5% survival improvement in the
study of using polyethylene bags to keep extreme low
birth weight infants warm with 80% power. p, = .87 and
p,=.92,0

87+.92

p= =.895

The desired effect size, d =.05, and to obtain .80 power,

Z) _ B(upper) = —-842 from Table 6-2, and
2
1 =.2361

A_{1.9601/2-.895(1—.895)

+(—.842)\/.87(1—.87)+.92(1—.92)

Therefore,

2361

2
.2361{1—% 1+4"051
=131.4

n=
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Thus, to obtain 80% power to detect a 5% improve-
ment in survival, we would need 132 infants per experi-
mental group.

B POWER AND SAMPLE SIZE FOR
RELATIVE RISK AND ODDS RATIO*

The formulas developed above can be used to estimate
power and sample sizes for relative risks and odds ratios.
Instead of specifying both proportions, you simply specify
one proportion, the desired relative risk or odds ratio, and
compute the other proportion. Let p, be the probability of
disease in the unexposed members of the population and
D, be the probability of disease in the exposed members of
the population.

The relative risk is the ratio of the probability of dis-
ease in those exposed to the toxin of interest over those
not exposed,

pexposed

b

RR= =
punexposted pl

so use the formulas above with
p,= RR- p,

Likewise, the odds ratio is

pexposed/(l_pexposed) — pz/(l_pz)
punexposted/(l - punexposted) pl/(l - pl)

OR=

SO
OR'P,
b= A
1+P,(OR-1)

B POWER AND SAMPLE SIZE FOR
CONTINGENCY TABLES'

Figure 6-10 (and the corresponding charts in Appendix B)
can also be used to compute the power and sample size for
contingency tables. As with other power computations,
the first step is to define the pattern you wish to be able to
detect. This effect is specified by selecting the proportions
of row and column observations that appear in each cell
of the contingency table.

*If time is limited this section can be skipped without loss of continuity.
“If time is limited this section can be skipped without loss of continuity.

B TABLE 6-3. Notation for Computing Power for

Contingency Tables

P11 P12 Ry

P21 P22 R,
Pos P Ry

€y Cs 1.00

Table 6-3 shows the notation for the computation for
a 3 X 2 contingency table: p;, is the proportion of all
observations expected in the upper left cell of the table, p,,
the proportion in the upper right corner, and so on. All
the proportions must add up to 1. The r row and ¢ column
sums are denoted with Rs and Cs with subscripts corre-
sponding to the rows and columns. The noncentrality
parameter for such a contingency table is defined as

(Pi]- - R,’Cj)z
RC,

N
¢=\/(r—l)(c—1)+lz

where r is the numbe